The Integral Effect & the intrinsic uncertainty (randomness) in dynamical systems

Jin-Song von Storch

Max-Planck Institute for Meteorology

TRR165/181 Joint Conference on "Scale interactions, data-driven modeling, and uncertainty in weather and climate". March 27-30, 2023, Ingolstadt

The Integral Effect & the intrinsic uncertainty (randomness) in dynamical systems

Jin-Song von Storch

- Uncertainties arise from
- lack of knowledge
- inability of controlling certain things
- Intrinsic uncertainty is a phenomenon which occurs even in case of complete understanding and full control
- Physical origin of intrinsic uncertainty is unknown (apart from that at quantum level)

Max-Planck Institute for Meteorology

Peter Müller, 2022

• observed in ultra low-frequency variations (ULFV) of equilibrium solution of x

ULFV not explainable by deterministic working of differential forcing f

(On Equilibrium Fluctuations, von Storch, 2022, Tellus)

•
$$(2\pi\omega)^2 \Gamma^x(\omega) = \Gamma^f(\omega)$$

• At frequency
$$\omega = 0$$
,

 $0 \Gamma^{x}(0) = \Gamma^{f}(0)$

• $\Gamma^{f}(0)$ must vanish to ensure equilibrium solution

For a dynamical system described by $\frac{dx}{dt} = f(\mathbf{x})$, randomness is

For a dynamical system described by $\frac{dx}{dt} = f(\mathbf{x})$, randomness is

observed in ultra low-frequency variations (ULFV) of equilibrium solution of x

ULFV not explainable by deterministic working of differential forcing f

(On Equilibrium Fluctuations, von Storch, 2022, Tellus)

ULFV results from the working of internal forcing g_{τ}

The physical origin of randomness

Preliminaries

- We consider only dynamical systems described by dxthat have an equilibrium solution x(t), which
 - varies stationarily for ever when left alone
 - has a time independent variance equilibrium variance
- Almost all systems of our interests do not have analytical solutions and have to be solved numerically.
- All numerical evidences are derived from the Lorenz model (1963)

$$t/dt = f(\mathbf{x})$$

The integral forcing g_{τ}

Discretize time axis using increment Δt . Set $\Delta t = 1$

• $\{x_s\} = \{x_s | s \in \mathbb{Z}_*\}$: solution at every time steps

• $\{x_{i\tau}\} = \{x_{i\tau} | i \in \mathbb{Z}_*\}$: solution at every τ time steps

Differential forcing f_s : • $f_s = f(\mathbf{x}_s)$ • $x_{s+1} = x_s + f_s$

Properties of the integral forcing g_{τ}

An integral forcing can be written as:

$$g_{\tau,i} = \sum_{s=i\tau}^{(i+1)\tau-1} f_s = \hat{c}_{\tau} + \hat{d}_{\tau} x_{i\tau} + \hat{\epsilon}_{\tau,i}$$

 \hat{c}_{τ} : intercept \hat{d}_{τ} : repression slope

$$\hat{\epsilon}_{\tau,i}$$
: residual $g_{\tau,i} - (\hat{c}_{\tau} + \hat{d}_{\tau} x_{i\tau})$ 2. comp

- [^]: derived from *n* data points along an equilibrium solution, here $n = 10^{6}$
- $g_{\tau,i}$ becomes increasingly linear in $x_{i\tau}$ with increasing au
- Once $g_{\tau,i}$ is linear in $x_{i\tau}$, $\hat{\epsilon}_{\tau,i}$ behaves like a white noise

 $g_{ au,i}$

8

3. comp

 $g_{ au,i}$

1. comp

 $g_{ au,i}$

0

-2

Properties of the integral forcing g_{τ}

An integral forcing can be written as:

$$g_{\tau,i} = \sum_{s=i\tau}^{(i+1)\tau-1} f_s = \hat{c}_\tau + \hat{d}_\tau x_{i\tau} + \hat{\epsilon}_{\tau,i}$$

 \hat{c}_{τ} : intercept \hat{d}_{τ} : repression slope

$$\hat{\epsilon}_{\tau,i}$$
: residual $g_{\tau,i} - (\hat{c}_{\tau} + \hat{d}_{\tau}x_{i\tau})$

[^]: derived from *n* data points along an equilibrium solution, here $n=10^6$

- $g_{\tau,i}$ becomes increasingly linear in $x_{i\tau}$ with increasing τ
- Once $g_{\tau,i}$ is linear in $x_{i\tau}$, $\hat{\epsilon}_{\tau,i}$ behaves like a white noise

Auto-correlation function $\overline{\epsilon_{\tau,i}\epsilon_{\tau,i+k}}^n$ as a function of lag k

Properties of the integral forcing g_{τ} 1. comp An integral forcing can be written as: $g_{ au,i}$ 0 $(i+1)\tau - 1$ $g_{\tau,i} = \sum f_s = \hat{c}_\tau + \hat{d}_\tau x_{i\tau} + \hat{\epsilon}_{\tau,i}$ $s=i\tau$ dissipating component of 8 $g_{\tau,i}$ with strength $|d_{\tau}|$ 2. comp fluctuating component $g_{ au,i}$ of $g_{ au.i}$ with strength $\epsilon_{ au}^{2'}$ • $g_{\tau,i}$ becomes increasingly linear in $x_{i\tau}$ with increasing au8 3. comp • Once $g_{\tau,i}$ is linear in $x_{i\tau}$, $\hat{\epsilon}_{\tau,i}$ behaves like a white noise $g_{ au,i}$ d_{τ} is always negative • $\overline{\epsilon_{\tau}^2}^n$ increases with $|\hat{d}_{\tau}|$, and stops to increases and becomes equals to $\overline{x^2}^n$ -4

when $|\hat{d}_{\tau}| = 1$, which happens when $\tau > \tau_0$

Properties of the integral forcing g_{τ}

• The dissipating and fluctuating component of g_{τ} are related to each other following the *FD*-curve:

$$Var(\epsilon_{\tau}) = Var(x) \left(1 - (1 + d_{\tau})^2\right)$$

with
$$Var(\epsilon_{\tau}) = \lim_{n \to \infty} \overline{\epsilon_{\tau}^2}^n$$
, $Var(x) = \lim_{n \to \infty} \overline{x^2}^n$

• $(\hat{d}_{\tau}, \overline{\epsilon_{\tau}^2}^n)$ -points lie on the *DF*-curve

- $1 + d_\tau = \rho_\tau$ so that $d_\tau \in [-2,0]$
- $\overline{\epsilon_{\tau}^2}^n$ reaches its maximum at d_{τ} =-1, which equals $\overline{x^2}^n$
- The *FD*-curve is independent of the functional form of *f*
- Different f make $(d_{\tau}, \overline{e_{\tau}^2}^n)$ -points to populate different parts of the DF-curve

$$y = a\left(1 - (1+z)^2\right):$$

$$\left(\hat{d}_{\tau}, \overline{\epsilon_{\tau}^2}^n\right), \tau = 1, \cdots, 10^3 \text{ from Lorenz model:}$$

$$\left(\hat{d}_{\tau}, \overline{\epsilon_{\tau}^2}^n\right), \tau = 1, \cdots, 10^3 \text{ from } dx/dt = \cos(2\pi t/P):$$

.

.

.

.

The integral effect = The ability of g_{τ} in producing white-noise like τ -stepping solution

- Even though equivalent in determining $\{x_s\}$ at a time, the summation (needed for obtaining g_{τ}) makes f and g_{τ} to contain different amounts of information about time sequence \longrightarrow f and g_{τ} generate variations in x in different ways
- f_s generates a change $x_{s+1} x_s$ Variations in f at a frequency generate variations in x at the SAME frequency
- For g_{τ} with $\tau > \tau_0$, we have $x_{(i+1)\tau} = c_{\tau} + \epsilon_{\tau,i}$, despite $x_{(i+1)\tau} x_{i\tau} = g_{\tau,i}$

 $\{x_{i\tau}\}$ varies at all frequencies smaller than $1/\tau_0$

Since
$$x_{(i+1)\tau} = x_{i\tau} + g_{\tau,i} = x_{i\tau} + (c_{\tau} + d_{\tau}x_{i\tau} + e_{\tau,i}),$$

$$x_{(i+1)\tau} = (1 + d_{\tau})^{i+1}x_0 + \sum_{k=0}^{i} (1 + d_{\tau})^k (c_{\tau} + d_{\tau})^k (c_{\tau})^k (c_{\tau})^k (c_{\tau} + d_{\tau})^k (c_{\tau})^k (c_$$

Like white noise!

Integral effect does not exists for all integral forcing g_{τ}

Since

-f is unable to generate variations at the lowest frequencies

- g_{τ} with $\tau > \tau_0$ exists only at frequencies $\omega < 1/\tau_0$

the integral effect can be quantified in terms of $Var(0) = 2\omega_0 \Gamma(0)$ by

$$\frac{Var(0)}{Var(x)} = 2\omega_0 \left(2\sum_{\tau=1}^{\infty} (1+d_{\tau}) + 1 \right)$$

where $\Gamma(0) = \sum \gamma_{\tau}$, $[-\omega_0, \omega_0]$ with $\omega_0 < 1/\tau_0$ is the frequency

range over which the spectrum of x has a white extension

Lorenz model

CONCLUSIONS:

1. g_{τ} with $\tau \in \mathbb{Z}_+$ obeys a law-like regularity (FD-curve) that relates its dissipating component characterized by d_{τ} to its fluctuating component characterized by $Var(\epsilon_{\tau})$, independent of the functional form of f

2. Randomness is an intrinsic feature of dx/dt = f that

 \blacksquare results from the joint working of the dissipating and the fluctuating component of g_{τ}

• only "visible" by integrating dx/dt = f forward in time

3. With respect to the equilibrium variance of x, time is irreversible and has an arrow !

