The Integral Effect & the intrinsic uncertainty (randomness) in dynamical systems

Jin-Song von Storch

Max-Planck Institute for Meteorology

TRR165/181 Joint Conference on "Scale interactions, data-driven modeling, and uncertainty in weather and climate". March 27-30, 2023, Ingolstadt

The Integral Effect & the intrinsic uncertainty (randomness) in dynamical systems

Jin-Song von Storch

Max-Planck Institute for Meteorology

Peter Müller, 2022

- Uncertainties arise from
- lack of knowledge
- inability of controlling certain things
- Intrinsic uncertainty is a phenomenon which occurs even in case of complete understanding and full control
- Physical origin of intrinsic uncertainty is unknown (apart from that at quantum level)

For a dynamical system describ

■ observed in ultra low-frequency variations (ULFV) of equilibrium solution of x

$$
\text{ord by } \frac{dx}{dt} = f(\mathbf{x}) \text{, randomness is}
$$

ULFV not explainable by deterministic working of differential forcing f

(*On Equilibrium Fluctuations*, von Storch, 2022, Tellus)

$$
\blacksquare (2\pi\omega)^2 \Gamma^x(\omega) = \Gamma^f(\omega)
$$

• At frequency
$$
\omega = 0
$$
,

 $0 \Gamma^x(0) = \Gamma^f(0)$

 $\Gamma^{\!f\!}}(0)$ must vanish to ensure equilibrium solution

ULFV results from the working of internal forcing g ^{*τ*}

(*On Equilibrium Fluctuations*, von Storch, 2022, Tellus)

The physical origin of randomness

-
-
-
-
-

For a dynamical system described by \rightarrow = $f(\mathbf{x})$, randomness is *dx dt* $=f(\mathbf{x})$

observed in ultra low-frequency variations (ULFV) of equilibrium solution of *x*

ULFV not explainable by deterministic working of differential forcing f

Preliminaries

- We consider only dynamical systems described by $dx/dt = f(\mathbf{x})$ that have an equilibrium solution $x(t)$, which
	- varies stationarily for ever when left alone
	- has a time independent variance equilibrium variance
- Almost all systems of our interests do not have analytical solutions and have to be solved numerically.
- All numerical evidences are derived from the Lorenz model (1963)

$$
d/dt = f(\mathbf{x})
$$

The integral forcing *g*_τ

Discretize time axis using increment Δt . Set $\Delta t = 1$

τ-stepping integral forcing *g* : *^τ*,*ⁱ* $x_{(i+1)\tau} = x_{i\tau} + g_{\tau,i}$ $g_{\tau,i} = \sum f_s$, for (*i*+1)*τ* ∑ *s*=*iτ* $f_{\scriptscriptstyle S}^{}$, for $\tau \in \mathbb{Z}_+$ $g_{1,i} = f_i$, for $\tau = 1$

■ ${x_s} = {x_s|s ∈ Z_*}$: solution at every time steps

 ${x_{i\tau}} = {x_{i\tau}} i \in \mathbb{Z}_{*}$: solution at every τ time steps

Differential forcing f_s : $f_s = f(\mathbf{x}_s)$

$$
\mathbf{x}_{s+1} = x_s + f_s
$$

 \hat{c}_{τ} : intercept *d*_τ: repression slope ̂

Properties of the integral forcing g_{τ}

An integral forcing can be written as:

$$
g_{\tau,i} = \sum_{s=i\tau}^{(i+1)\tau-1} f_s = \hat{c}_{\tau} + \hat{d}_{\tau} x_{i\tau} + \hat{e}_{\tau,i}
$$

- $:$ derived from n data points along an equilibrium solution, here $n = 10^6$
- $g_{\tau,i}$ becomes increasingly linear in $x_{i\tau}$ with increasing *τ*
- $\operatorname{Once} \ g_{\tau,i}$ is linear in $x_{i\tau}$, $\hat{e}_{\tau,i}$ behaves like a white noise ̂

 $g_{\tau,i}$

8

 $g_{\tau,i}$

1. comp

 $g_{\tau,i}$

 O

 -2

$$
\hat{e}_{\tau,i}: \text{residual} \ \ g_{\tau,i} - \left(\hat{c}_{\tau} + \hat{d}_{\tau} x_{i\tau}\right) \tag{8}
$$

- $g_{\tau,i}$ becomes increasingly linear in $x_{i\tau}$ with increasing *τ*
- $\operatorname{Once} \ g_{\tau,i}$ is linear in $x_{i\tau}$, $\hat{e}_{\tau,i}$ behaves like a white noise ̂

 \hat{c}_{τ} : intercept *d*_τ: repression slope ̂

Properties of the integral forcing g_{τ}

An integral forcing can be written as:

Auto-correlation function $\overline{\epsilon_{\tau,i}\epsilon_{\tau,i+k}}^n$ as a function of lag k

$$
g_{\tau,i} = \sum_{s=i\tau}^{(i+1)\tau-1} f_s = \hat{c}_{\tau} + \hat{d}_{\tau} x_{i\tau} + \hat{e}_{\tau,i}
$$

$$
\hat{e}_{\tau,i}
$$
: residual $g_{\tau,i} - (\hat{c}_{\tau} + \hat{d}_{\tau}x_{i\tau})$

 $:$ derived from n data points along an equilibrium solution, here $n = 10^6$

Properties of the integral forcing g_{τ} 1. comp An integral forcing can be written as: $g_{\tau,i}$ $\mathbf 0$ $(i+1)\tau-1$ ̂ ̂ ̂ $g_{\tau,i} =$ $f_s = \hat{c}_{\tau} + d_{\tau}x_{i\tau} + \hat{e}_{\tau,i}$ ∑ $s=i\tau$ dissipating component of 8 $|g_{\tau,i}$ with strength $|d_{\tau}|$ 2. comp fluctuating component *n* $g_{\tau,i}$ of $g_{\tau,i}$ with strength ϵ^2_{τ} $g_{\tau,i}$ becomes increasingly linear in $x_{i\tau}$ with increasing *τ* 8 3. comp ̂ $\operatorname{Once} \ g_{\tau,i}$ is linear in $x_{i\tau}$, $\hat{e}_{\tau,i}$ behaves like a white noise $g_{\tau,i}$

 is always negative *dτ* ̂ $\epsilon_{\tau}^{2^{n}}$ increases with $|\hat{d}_{\tau}|$, and stops to increases and becomes equals to x^{2n} when $|d_{\tau}|$ =1, which happens when $\tau > \tau_{0}$ *n* $|d_{\tau}|$ ̂ ̂

Properties of the integral forcing *g*^{*τ*}

The dissipating and fluctuating component of *gτ* are related to each other following the *FD*-curve:

$$
Var(\epsilon_{\tau}) = Var(x) \left(1 - (1 + d_{\tau})^2\right)
$$

with
$$
Var(\epsilon_{\tau}) = \lim_{n \to \infty} \overline{\epsilon_{\tau}^{2^n}}
$$
, $Var(x) = \lim_{n \to \infty} \overline{x^{2^n}}$

 $(d_{\tau}, e_{\tau}^{2^n})$ -points lie on the *DF*-curve \ddot{a} *n* $\begin{array}{c} \end{array}$

- $1 + d_{\tau} = \rho_{\tau}$ so that $d_{\tau} \in [-2, 0]$
- $\epsilon_{\tau}^{2^{n}}$ reaches its maximum at d_{τ} =-1, which equals $\overline{x^2}$ ^{*n*} *n dτ*
- The *FD*-curve is independent of the functional form of *f*
- Different f make $(d_{\tau}, e_{\tau}^{2^n})$ -points to populate different parts of the DF-curve *n* $\begin{array}{c} \end{array}$

$$
y = a(1 - (1 + z)^2):
$$

\n
$$
(\hat{d}_{\tau}, \overline{\epsilon_{\tau}^{2}}^n), \tau = 1, \dots, 10^3 \text{ from Lorenz model:}
$$

\n
$$
(\hat{d}_{\tau}, \overline{\epsilon_{\tau}^{2}}^n), \tau = 1, \dots, 10^3 \text{ from } dx/dt = \cos(2\pi t/P):
$$

.

The integral effect = The ability of g_τ in producing white-noise like τ -stepping solution

- Even though equivalent in determining $\{x_s\}$ at a time, the summation (needed for obtaining g_τ) makes f and g_τ to contain different amounts of information about time sequence f and g_r generate variations in x in different ways
- **■** f_s generates a change $x_{s+1} x_s$ Variations in f at a frequency generate variations in x at the SAME frequency
- For g_τ with $\tau > \tau_0$, we have $x_{(i+1)\tau} = c_\tau + \epsilon_{\tau,i}$, despite $x_{(i+1)\tau} x_{i\tau} = g_{\tau,i}$

 ${x_{i\tau}}$ varies at all frequencies smaller than $1/\tau_0$

Since
$$
x_{(i+1)\tau} = x_{i\tau} + g_{\tau,i} = x_{i\tau} + (c_{\tau} + d_{\tau}x_{i\tau} + \epsilon_{\tau,i}),
$$

\n
$$
x_{(i+1)\tau} = (1 + d_{\tau})^{i+1}x_0 + \sum_{k=0}^{i} (1 + d_{\tau})^k (c_{\tau} +
$$
\n**Like random walk:**

\nNo equilibrium solution possible!

\n
$$
d_{\tau} = 0
$$
\n
$$
d_{\tau} = 0
$$
\n
$$
d_{\tau} = 0
$$
\n**EXECUTE:**

\n
$$
x_{(i+1)\tau} = x_0 + \sum_{k=0}^{i} (c_{\tau} + \epsilon_{\tau,i-k}) x_{(i+1)\tau} + \sum
$$

Like white noise!

$$
\frac{Var(0)}{Var(x)} = 2\omega_0 \left(2\sum_{\tau=1}^{\infty} (1 + d_{\tau}) + 1 \right)
$$

where $\Gamma(0)=\sum_{\tau} \gamma_{\tau}$, $\left[-\omega_{0},\omega_{0}\right]$ with $\omega_{0}< 1/\tau_{0}\,$ is the frequency ∑ *τ*=−∞ γ_{τ} , $\left[-\omega_{0},\omega_{0}\right]$ with $\omega_{0} < 1/\tau_{0}$

range over which the spectrum of x has a white extension

- *f* is unable to generate variations at the lowest frequencies

 $-g_{\tau}$ with $\tau > \tau_0$ exists only at frequencies $\omega < 1/\tau_0$

the integral effect can be quantified in terms of $Var(0) = 2\omega_0\Gamma(0)$ by

■ Integral effect does not exists for all integral forcing g_{τ}

Since

Lorenz model

2. Randomness is an intrinsic feature of *dx*/*dt* = *f* **that**

results from the joint working of the dissipating and the fluctuating component of g_τ

• only "visible" by integrating $dx/dt = f$ forward in time

3. With respect to the equilibrium variance of *x***, time is irreversible and has an arrow !**

-
-
-

1. g_τ with $\tau \in \mathbb{Z}_+$ obeys a law-like regularity (FD-curve) that relates its dissipating component \bm{c} characterized by d_{τ} to its fluctuating component characterized by $Var(\epsilon_{\tau})$, independent of the **functional form of** *f*

CONCLUSIONS: