Data Based Computation of Coherent Sets in Fluids

Alvaro de Diego^1 joint work with Gary Froyland², Oliver Junge^1 & Peter Koltai^3 $\,$

 $^1{\rm TU}$ München $^2{\rm UNSW}$ Sydney $^3{\rm Universit\"at}$ Bayreuth

March 29, 2023

Alvaro de Diego

Computation of Coherent Sets

March 29, 2023

Lagrangian Coherent Structures

< ロト < 回 > < 回 > < 回 > < 回 >

Lagrangian Coherent Structures

▲ 西部

æ

- 4 ⊒ →

Roadmap

Alvaro de Diego

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2

• Define Coherent sets as sets that exhibit little filamentation (Froyland 2015)

Image: Image:

B → B

• Define Coherent sets as sets that exhibit little filamentation (Froyland 2015)

Image: Image:

B → B

- Define Coherent sets as sets that exhibit little filamentation (Froyland 2015)
- Approximate with a partial differential equation.

- Define Coherent sets as sets that exhibit little filamentation (Froyland 2015)
- Approximate with a partial differential equation.
- Solve the partial differential equation with only given trajectory data.

Let $M \subset \mathbb{R}^d$ bounded and open and $D \subset M$.

B → B

Let $M \subset \mathbb{R}^d$ bounded and open and $D \subset M$.

▲ 西部

∃ >

Let $M \subset \mathbb{R}^d$ bounded and open and $D \subset M$.

Good sets $D \subset M$ make the quantity

$$\frac{\ell_{d-1}(\partial D)}{\ell_d(D)}$$

small.

Alvaro de Diego

March 29, 2023

Dynamic Cheeger ratio (Froyland 2015)

Let $M \subseteq \mathbb{R}^n$ (bounded and open) and $T: M \to M$ volume preserving diffeomorphism.

▲ 西部

∃ ⊳

Dynamic Cheeger ratio (Froyland 2015)

Let $M \subseteq \mathbb{R}^n$ (bounded and open) and $T: M \to M$ volume preserving diffeomorphism.

Dynamic Cheeger ratio (Froyland 2015)

Let $M \subseteq \mathbb{R}^n$ (bounded and open) and $T: M \to M$ volume preserving diffeomorphism.

Good sets $D \subset M$ make the quantity

$$\frac{\ell_{d-1}(\partial D) + \ell_{d-1}(\partial (TD))}{2\ell_d(D)}$$

small.

The geometric problem

- 4 ⊒ →

æ

Definition

Let $M \subseteq \mathbb{R}^n$ (bounded and open) and $T: M \to M$ volume preserving diffeomorphism. Define the *dynamic Cheeger ratio* of a set $D \subset M$ as

$$rac{\ell_{d-1}(\partial D)+\ell_{d-1}(\partial(\mathcal{T}D))}{2\ell_d(D)}.$$

Definition

Let $M \subseteq \mathbb{R}^n$ (bounded and open) and $T: M \to M$ volume preserving diffeomorphism. Define the *dynamic Cheeger ratio* of a set $D \subset M$ as

$$\frac{\ell_{d-1}(\partial D) + \ell_{d-1}(\partial (TD))}{2\ell_d(D)}.$$

Dynamic Cheeger Problem

Find a set $D \subset M$ of minimal dynamic Cheeger ratio.

Alvaro de Diego

3.5 3

L¹ Variational Problem

Find $u: M \to \mathbb{R}$ with $u|_{\partial M} \equiv 0$ such that

$$\frac{\|\nabla u\|_1 + \|\nabla (u \circ T^{-1})\|_1}{2\|u\|_1}$$

is minimal (where $\|v\|_1 = \int_M |v|$)

L¹ Variational Problem

Find $u: M \to \mathbb{R}$ with $u|_{\partial M} \equiv 0$ such that

$$\frac{\|\nabla u\|_1 + \|\nabla (u \circ T^{-1})\|_1}{2\|u\|_1}$$

is minimal (where $\|v\|_1 = \int_M |v|$)

Theorem (Froyland 2015, Froyland & Junge 2019)

The minimal value of the variational problem coincides with the minimal value of the geometric problem.

If u is a solution of the variational problem, then u is a characteristic function on a solution of the geometric problem (classical case).

If u is a solution of the variational problem, then u is a characteristic function on a solution of the geometric problem (classical case). Superlevel sets of u give solutions to the geometric problem.

If u is a solution of the variational problem, then u is a characteristic function on a solution of the geometric problem (classical case). Superlevel sets of u give solutions to the geometric problem.

L^2 variational problem

Alvaro de Diego

글 🕨 🛛 글

To make the variational problem easier to solve: Replace $\|\cdot\|_1$ by $\|\cdot\|_2^2$:

э

To make the variational problem easier to solve: Replace $\|\cdot\|_1$ by $\|\cdot\|_2^2$:

 L^2 variational problem

Find $u: M \to \mathbb{R}$ with $u|_{\partial M} \equiv 0$ such that

$$\frac{\|\nabla u\|_2^2 + \|\nabla (u \circ T^{-1})\|_2^2}{2\|u\|_2^2}$$

is minimal (where $\|v\|_2^2 = \int_M |v|^2$).

You lose some things:

< ≣⇒

æ

You lose some things:

• No equality of minimal values anymore

표 ▶ 표

You lose some things:

- No equality of minimal values anymore
- Minimizers are not characteristic functions

▲□ > ▲圖 > ▲ 国 > ▲ 国 >

æ

• The classical *Cheeger inequality* (Cheeger 1970):

$$\inf_{D\subseteq M}\frac{\ell_{d-1}(\partial D)}{\ell_d(D)}\leq 2\sqrt{|\lambda|},$$

where λ is the eigenvalue of Δ with smallest magnitude, can be generalized to the dynamic case. (Froyland 2015).

• The classical *Cheeger inequality* (Cheeger 1970):

$$\inf_{D\subseteq M}\frac{\ell_{d-1}(\partial D)}{\ell_d(D)}\leq 2\sqrt{|\lambda|},$$

where λ is the eigenvalue of Δ with smallest magnitude, can be generalized to the dynamic case. (Froyland 2015).

• Level sets are still good on average, even if not optimal.

• The classical *Cheeger inequality* (Cheeger 1970):

$$\inf_{D\subseteq M}\frac{\ell_{d-1}(\partial D)}{\ell_d(D)}\leq 2\sqrt{|\lambda|},$$

where λ is the eigenvalue of Δ with smallest magnitude, can be generalized to the dynamic case. (Froyland 2015).

- Level sets are still good on average, even if not optimal.
- Problem much easier to solve.

Using $\|\cdot\|_p^p$ instead

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

What if we use $\|\cdot\|_p^p$ with 1 instead of <math>p = 2?

Image: Image:

3 🕨 🤅 3
What if we use $\|\cdot\|_p^p$ with 1 instead of <math>p = 2?

Eigenfunctions get "flatter" again, but in experiments the best level set is already near the optimum for p = 2.

Reformulating to a PDE

Image: A matrix

< 3 >

æ

Reformulating to a PDE

The quantity

$$\frac{\|\nabla u\|_2^2 + \|\nabla (u \circ T^{-1})\|_2^2}{\|u\|_2^2}$$

has the form of a Rayleigh quotient. Recall the classic result:

Image: Image:

B → B

Reformulating to a PDE

The quantity

$$\frac{\|\nabla u\|_2^2 + \|\nabla (u \circ T^{-1})\|_2^2}{\|u\|_2^2}$$

has the form of a Rayleigh quotient. Recall the classic result:

Theorem

Let $0 \neq u \in H_0^1(M)$ be a minimizer of the Rayleigh quotient

$$\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2}^{2}}$$

Then u is the first eigenfunction of $-\Delta$, i.e. there is a $\lambda > 0$ such that

$$-\Delta u = \lambda u$$

and λ is minimal.

Alvaro de Diego

March 29, 2023

The dynamic Laplacian

Alvaro	de	Diego
--------	----	-------

표 문 표

Definition (Froyland 2015)

Let T^* , T_* be defined by $T^*u = u \circ T^{-1}$ and $T_*u = u \circ T$. Define the *dynamic Laplacian* $\overline{\Delta}$ by

$$ar{\Delta} u := rac{1}{2} (\Delta u + T_* \Delta T^* u)$$

∃ ▶ 3

Definition (Froyland 2015)

Let T^* , T_* be defined by $T^*u = u \circ T^{-1}$ and $T_*u = u \circ T$. Define the dynamic Laplacian $\overline{\Delta}$ by

$$ar{\Delta}u := rac{1}{2}(\Delta u + T_*\Delta T^*u)$$

Theorem

The solution of the L^2 variational problem is the first Dirichlet eigenfunction of $\bar{\Delta}$, i.e. it solves

$$-\bar{\Delta}u = \lambda u ext{ on } M$$
, $u \equiv 0 ext{ on } \partial M$

for minimal λ .

Computing eigenfunctions

Alvaro de Diego

▲ 西部

글 > 글

Weak formulation (Dirichlet boundary conditions): find $u \in H_0^1(M)$ and $\lambda \in \mathbb{R}$ such that

$$\int_{\mathcal{M}} \frac{1}{2} \left(\nabla u \cdot \nabla v + \nabla (T^* u) \cdot \nabla (T^* v) \right) = \lambda \int_{\mathcal{M}} u v \quad \forall v \in H^1_0(\mathcal{M}).$$

< A[™]

3 🕨 🤅 3

Weak formulation (Dirichlet boundary conditions): find $u \in H_0^1(M)$ and $\lambda \in \mathbb{R}$ such that

$$\int_{\mathcal{M}} \frac{1}{2} \left(\nabla u \cdot \nabla v + \nabla (T^* u) \cdot \nabla (T^* v) \right) = \lambda \int_{\mathcal{M}} u v \quad \forall v \in H^1_0(\mathcal{M}).$$

Solving with FEM: we need a way to compute

$$\int_M \nabla(T^*u) \cdot \nabla(T^*v)$$

for a trial function u and a test function v.

Weak formulation (Dirichlet boundary conditions): find $u \in H_0^1(M)$ and $\lambda \in \mathbb{R}$ such that

$$\int_{\mathcal{M}} \frac{1}{2} \left(\nabla u \cdot \nabla v + \nabla (T^* u) \cdot \nabla (T^* v) \right) = \lambda \int_{\mathcal{M}} u v \quad \forall v \in H^1_0(\mathcal{M}).$$

Solving with FEM: we need a way to compute

$$\int_M \nabla(T^*u) \cdot \nabla(T^*v)$$

for a trial function u and a test function v. We only want to use given trajectory data.

Alvaro de Diego

Computation of Coherent Sets

March 29, 2023

B → B

Given x_i and $T(x_i)$ for $i \in \{1, ..., N\}$, calculate two triangulations \mathcal{T}_0 and \mathcal{T}_1 with the x_i and the $T(x_i)$ as vertices respectively.

Given x_i and $T(x_i)$ for $i \in \{1, ..., N\}$, calculate two triangulations \mathcal{T}_0 and \mathcal{T}_1 with the x_i and the $T(x_i)$ as vertices respectively. Let ϕ_k^0 and ϕ_k^1 be the piecewise linear hat functions on \mathcal{T}_0 and \mathcal{T}_1 . If

$$u = \sum_{k=1}^{N} \alpha_k \varphi_k^0$$

is a piecewise linear function on \mathcal{T}_1 then approximate

$$T^* u \approx \sum_{k=N}^k \alpha_k \varphi_k^1$$

 φ_k^0

/

イロト 不得下 イヨト イヨト 二日

 $\varphi_k^{\mathbf{0}}$

Alvaro de Diego

< ∃⇒

æ

$$\frac{\ell_{d-1}(\partial D) + \ell_{d-1}(\partial (TD))}{2\min(\ell_d(D), \ell_d(M \setminus D))}.$$

э

$$\frac{\ell_{d-1}(\partial D) + \ell_{d-1}(\partial (TD))}{2\min(\ell_d(D), \ell_d(M \setminus D))}$$

Leads to Neumann boundary conditions in PDE.

$$\frac{\ell_{d-1}(\partial D) + \ell_{d-1}(\partial (TD))}{2\min(\ell_d(D), \ell_d(M \setminus D))}$$

Leads to Neumann boundary conditions in PDE.

 For finding multiple structures: use higher eigenfunctions of Δ and methods based on spectral clustering (Froyland & Dellnitz 2003, Froyland 2005).

$$\frac{\ell_{d-1}(\partial D) + \ell_{d-1}(\partial (TD))}{2\min(\ell_d(D), \ell_d(M \setminus D))}$$

Leads to Neumann boundary conditions in PDE.

 For finding multiple structures: use higher eigenfunctions of Δ and methods based on spectral clustering (Froyland & Dellnitz 2003, Froyland 2005).

Alvaro de Diego

イロト イヨト イヨト イヨト

э.

Geostrophic ocean flow (SSALTO/DUACS, distributed by AVISO).

day 0

Alvaro de Diego

< AP

⇒ →

Alvaro de Diego

イロト イヨト イヨト イヨト

э.

First nontrivial eigenfunction (Neumann Boundary conditions)

day 0

∃ >

Best superlevel set:

Alvaro de Diego

March 29, 2023

포 문 문

A I >
A I >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Software

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э.

< A[™]

< 3 >

3

• FEM discretizations of dynamic Laplacian

- FEM discretizations of dynamic Laplacian
- Geodesic elliptic material vortices

∃ ▶ 3

- FEM discretizations of dynamic Laplacian
- Geodesic elliptic material vortices
- Graph Laplacian / diffusion maps based methods

э

Summary

イロト イヨト イヨト イヨト

э.

• We defined coherence of a set by the amount of filamentation over the course of the dynamics.

э

- We defined coherence of a set by the amount of filamentation over the course of the dynamics.
- The corresponding geometric problem can be approximated by an eigenvalue problem involving the dynamic Laplacian Δ.

- We defined coherence of a set by the amount of filamentation over the course of the dynamics.
- The corresponding geometric problem can be approximated by an eigenvalue problem involving the dynamic Laplacian Δ.
- The resulting partial differential equation can be solved using only given trajectory data.
Thank you

Image: A matrix

▶ ∢ ≣ ▶

æ