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Roadmap

Define Coherent sets as sets that exhibit little filamentation (Froyland
2015)
Approximate with a partial differential equation.
Solve the partial differential equation with only given trajectory data.
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Cheeger ratio

Let M ⊂ Rd bounded and open and D ⊂ M.

Good set D Bad sets D

Good sets D ⊂ M make the quantity

ℓd−1(∂D)

ℓd(D)

small.
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Dynamic Cheeger ratio (Froyland 2015)

Let M ⊆ Rn (bounded and open) and T : M → M volume preserving
diffeomorphism.

D

TD

Good Bad

Good sets D ⊂ M make the quantity

ℓd−1(∂D) + ℓd−1(∂(TD))

2ℓd(D)

small.

Alvaro de Diego Computation of Coherent Sets March 29, 2023 6 / 25



Dynamic Cheeger ratio (Froyland 2015)

Let M ⊆ Rn (bounded and open) and T : M → M volume preserving
diffeomorphism.

D

TD

Good Bad

Good sets D ⊂ M make the quantity

ℓd−1(∂D) + ℓd−1(∂(TD))

2ℓd(D)

small.

Alvaro de Diego Computation of Coherent Sets March 29, 2023 6 / 25



Dynamic Cheeger ratio (Froyland 2015)

Let M ⊆ Rn (bounded and open) and T : M → M volume preserving
diffeomorphism.

D

TD

Good Bad

Good sets D ⊂ M make the quantity

ℓd−1(∂D) + ℓd−1(∂(TD))

2ℓd(D)

small.

Alvaro de Diego Computation of Coherent Sets March 29, 2023 6 / 25



The geometric problem

Definition
Let M ⊆ Rn (bounded and open) and T : M → M volume preserving
diffeomorphism. Define the dynamic Cheeger ratio of a set D ⊂ M as

ℓd−1(∂D) + ℓd−1(∂(TD))

2ℓd(D)
.

Dynamic Cheeger Problem
Find a set D ⊂ M of minimal dynamic Cheeger ratio.
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An equivalent variational problem

L1 Variational Problem
Find u : M → R with u|∂M ≡ 0 such that

∥∇u∥1 + ∥∇(u ◦ T−1)∥1

2∥u∥1

is minimal (where ∥v∥1 =
∫
M |v |)

Theorem (Froyland 2015, Froyland & Junge 2019)
The minimal value of the variational problem coincides with the minimal
value of the geometric problem.
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Connection between the geometric and the L1 variational
problem

If u is a solution of the variational problem, then u is a characteristic
function on a solution of the geometric problem (classical case). Superlevel
sets of u give solutions to the geometric problem.
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L2 variational problem

To make the variational problem easier to solve: Replace ∥ · ∥1 by ∥ · ∥2
2:

L2 variational problem
Find u : M → R with u|∂M ≡ 0 such that

∥∇u∥2
2 + ∥∇(u ◦ T−1)∥2

2
2∥u∥2

2

is minimal (where ∥v∥2
2 =

∫
M |v |2).
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You lose some things:

No equality of minimal values anymore
Minimizers are not characteristic functions
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But:

The classical Cheeger inequality (Cheeger 1970):

inf
D⊆M

ℓd−1(∂D)

ℓd(D)
≤ 2

√
|λ|,

where λ is the eigenvalue of ∆ with smallest magnitude, can be
generalized to the dynamic case. (Froyland 2015).
Level sets are still good on average, even if not optimal.
Problem much easier to solve.
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Using ∥ · ∥pp instead

What if we use ∥ · ∥pp with 1 < p < 2 instead of p = 2?
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Eigenfunctions get “flatter” again, but in experiments the best level set is
already near the optimum for p = 2.
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Reformulating to a PDE

The quantity
∥∇u∥2

2 + ∥∇(u ◦ T−1)∥2
2

∥u∥2
2

has the form of a Rayleigh quotient. Recall the classic result:

Theorem
Let 0 ̸= u ∈ H1

0 (M) be a minimizer of the Rayleigh quotient

∥∇u∥2
2

∥u∥2
2
.

Then u is the first eigenfunction of −∆, i.e. there is a λ > 0 such that

−∆u = λu

and λ is minimal.
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The dynamic Laplacian

Definition (Froyland 2015)

Let T ∗,T∗ be defined by T ∗u = u ◦ T−1 and T∗u = u ◦ T . Define the
dynamic Laplacian ∆̄ by

∆̄u :=
1
2
(∆u + T∗∆T ∗u)

Theorem
The solution of the L2 variational problem is the first Dirichlet
eigenfunction of ∆̄, i.e. it solves

−∆̄u = λu on M , u ≡ 0 on ∂M

for minimal λ.

Alvaro de Diego Computation of Coherent Sets March 29, 2023 15 / 25



The dynamic Laplacian

Definition (Froyland 2015)

Let T ∗,T∗ be defined by T ∗u = u ◦ T−1 and T∗u = u ◦ T . Define the
dynamic Laplacian ∆̄ by

∆̄u :=
1
2
(∆u + T∗∆T ∗u)

Theorem
The solution of the L2 variational problem is the first Dirichlet
eigenfunction of ∆̄, i.e. it solves

−∆̄u = λu on M , u ≡ 0 on ∂M

for minimal λ.

Alvaro de Diego Computation of Coherent Sets March 29, 2023 15 / 25



The dynamic Laplacian

Definition (Froyland 2015)

Let T ∗,T∗ be defined by T ∗u = u ◦ T−1 and T∗u = u ◦ T . Define the
dynamic Laplacian ∆̄ by

∆̄u :=
1
2
(∆u + T∗∆T ∗u)

Theorem
The solution of the L2 variational problem is the first Dirichlet
eigenfunction of ∆̄, i.e. it solves

−∆̄u = λu on M , u ≡ 0 on ∂M

for minimal λ.

Alvaro de Diego Computation of Coherent Sets March 29, 2023 15 / 25



Computing eigenfunctions

Weak formulation (Dirichlet boundary conditions): find u ∈ H1
0 (M) and

λ ∈ R such that∫
M

1
2
(∇u · ∇v +∇(T ∗u) · ∇(T ∗v)) = λ

∫
M
uv ∀v ∈ H1

0 (M).

Solving with FEM: we need a way to compute∫
M
∇(T ∗u) · ∇(T ∗v)

for a trial function u and a test function v .
We only want to use given trajectory data.
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Collocation on adapted meshes (Froyland & Junge, 2019)

Given xi and T (xi ) for i ∈ {1, . . . ,N}, calculate two triangulations T0 and
T1 with the xi and the T (xi ) as vertices respectively.
Let ϕ0

k and ϕ1
k be the piecewise linear hat functions on T0 and T1. If

u =
N∑

k=1

αkφ
0
k

is a piecewise linear function on T1 then approximate

T ∗u ≈
k∑

k=N

αkφ
1
k
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Collocation on adapted meshes (Froyland & Junge, 2019)

φ0
k

T ∗ T ∗φ0
k

Approximation φ1
k

on adapted mesh
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Multiple structures

Different geometric problem: partition into two subsets. Measure

ℓd−1(∂D) + ℓd−1(∂(TD))

2min(ℓd(D), ℓd(M\D))
.

Leads to Neumann boundary conditions in PDE.

For finding multiple structures: use higher eigenfunctions of ∆̄ and
methods based on spectral clustering ( Froyland & Dellnitz 2003,
Froyland 2005).
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Example

Geostrophic ocean flow (SSALTO/DUACS, distributed by AVISO).
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Example

First nontrivial eigenfunction (Neumann Boundary conditions)
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Best superlevel set:

Alvaro de Diego Computation of Coherent Sets March 29, 2023 22 / 25



Software

Julia package CoherentStructures.jl (Schilling, Karrasch, Junge, de Diego):
FEM discretizations of dynamic Laplacian
Geodesic elliptic material vortices
Graph Laplacian / diffusion maps based methods
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Summary

We defined coherence of a set by the amount of filamentation over the
course of the dynamics.
The corresponding geometric problem can be approximated by an
eigenvalue problem involving the dynamic Laplacian ∆̄.
The resulting partial differential equation can be solved using only
given trajectory data.
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Thank you
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