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Hyper-Parameterization (HP) approach

Idea: Keep the modelled solution in the region of phase space occupied by
the reference solution.

HP draws upon the phase space as an abstraction layer that includes
OE effects on all spatiotemporal scales. The main advantage of the HP
approach is that it does not require to know the physics behind small scales
and large–small scale interactions to reproduce them.
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Advection of the image point in phase space
The idea of the method is based on the fact that a first-order ordinary differential equation

x′(t) = F(x), x ∈ Rn

can be geometrically interpreted as a vector field F(x) in the phase space. As an example,
we consider the Lorenz 63 system:

x′(t) = F(x(t)), F :=

 σ(y − x)
x(ρ− z)− y
xy − βz
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If the vector field F(x) (computed from the reference data) is known, it can be used it to
advect an image point y (low-resolution solution) the evolution of which can be described by
the equation:

y′(t) =
1

N

∑
i∈U(y(t))

F(x(ti)), y(t0) = x(t0)

Intuitively, it can be viewed as motion of a ball (image point y) in a river (vector field F(x)),
where the nudging term keeps the ball in the river bed.

Trajectory y(t) and its neighbourhood F(x(ti))
∣∣∣
U(y(t))

in the Lorenz 63 vector field
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Reference solution Modelled solution
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Reference solution Modelled solution

y′(t) =
1

N1

∑
i∈U(y(t))

F(x(ti)) + η

 1

N2

∑
i∈U(y(t))

x(ti)− y(t)

, y(t0) = x(t0)
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Reference solution Modelled solution

y′(t) =
1

N1

∑
i∈U(y(t))

F(x(ti)) + η

 1

N2

∑
i∈U(y(t))

x(ti)− y(t)

, y(t0) = x(t0)

Reference solution Modelled solution (η = 0.1)
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Multilayer QG equations (channel flow)
∂tq1 + u1 · ∇q1 = ν∇4ψ1 − β∂xψ1,

∂tq2 + u2 · ∇q2 = ν∇4ψ2 − µ∇2ψ2 − β∂xψ2.
(1)

Forcing is given by ψi → −Ui y + ψi, i = 1, 2; q = (q1, q2) and ψ = (ψ1, ψ2) are related
through the system of equations

q1 = ∇2ψ1 + s1(ψ2 − ψ1), q2 = ∇2ψ2 + s2(ψ1 − ψ2). (2)
The periodic horizontal boundary conditions set at eastern, Γ2, and western, Γ4, boundaries

ψ
∣∣∣
Γ2

= ψ
∣∣∣
Γ4

, ψ = (ψ1, ψ2) , (3)

and no-slip boundary conditions u
∣∣∣
Γ1

= u
∣∣∣
Γ3

= 0 . (4)

set at northern, Γ1, and southern, Γ3, boundaries of the domain Ω.

The QG equations (18) can be written in the following form

q′(t) = F(q,ψ,u), (5)

where F is the vector field used to advect the image point y(t) (low-resolution solution):

y′(t) =
1

N1

∑
i∈U(y(t))

F(q,ψ,u) + η

 1

N2

∑
i∈U(y(t))

q(ti)− y(t)

, y(t0) = q(t0).
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Multilayer QG equations (channel flow)

Reference solution: 512× 256→ 128× 64
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Multilayer QG equations (channel flow)

Reference solution: 512× 256→ 128× 64
Modelled solution: 128× 64
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Multilayer QG equations (channel flow)

Reference solution: 512× 256→ 128× 64
Modelled solution: 128× 64
Hyper-parameterized solution (η = 0): 128× 64
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Multilayer QG equations (channel flow)

Reference solution: 512× 256→ 128× 64
Modelled solution: 128× 64
Hyper-parameterized solution (η = 0.1): 128× 64
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The North Atlantic
A coupled 46-layer ocean-atmospheric model (MITgcm) at 1/12◦ and 1/3◦ horizontal resolution
was initially spun up from the state of rest for 5 years, and integrated for another 2 years (1+1
for the hyper-parameterized solution; η = 0.001).

Reference surface relative vorticity (SRV)
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The North Atlantic
A coupled 46-layer ocean-atmospheric model (MITgcm) at 1/12◦ and 1/3◦ horizontal resolution
was initially spun up from the state of rest for 5 years, and integrated for another 2 years (1+1
for the hyper-parameterized solution; η = 0.001).

Reference SRV (top), modelled SRV (bottom)
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The North Atlantic
A coupled 46-layer ocean-atmospheric model (MITgcm) at 1/12◦ and 1/3◦ horizontal resolution
was initially spun up from the state of rest for 5 years, and integrated for another 2 years (1+1
for the hyper-parameterized solution; η = 0.001).

Reference SRV (top), modelled SRV (middle), hyper-parameterized SRV (bottom)
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The North Atlantic

Reference SST (top) and hyper-parameterized SST (bottom)
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The North Atlantic
Hyper-parameterized solution evolution in the reference phase space
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Dynamical system reconstruction
Given a reference solution x(t), t ∈ [0, T ], x ∈ Rn, reconstruct an underlying dynamical
system

y′(t) = F(y), y ∈ Rn, t ∈ [0, T̃ > T ] : ‖x(t)− y(t)‖ ≤ ε
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Dynamical system reconstruction
Given a reference solution x(t), t ∈ [0, T ], x ∈ Rn, reconstruct an underlying dynamical
system (based on a compressed EOF-PC description of x)

y′(t) = F(y), y ∈ Rm, t ∈ [0, T̃ > T ], m << n : ‖x(t)− P{y(t)}‖ ≤ ε ,

where y(t) represents PCs.
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Dynamical system reconstruction
Given a reference solution x(t), t ∈ [0, T ], x ∈ Rn, the idea of the method is to reconstruct
an underlying dynamical system (based on a compressed EOF-PC description of x)

y′(t) = F(y), y ∈ Rm, t ∈ [0, T̃ > T ], m << n : ‖x(t)− P{y(t)}‖ ≤ ε , (6)

where y(t) represents PCs. The RHS of (6) is approximated with 2nd order polynomials,
P(y), and Fourier series F(y):

F(y) ≈ P(y) + F(y) , (7)

where P(y) := a0 +

m∑
i=1

aiyi + biy
2
i + cijyiyj, j = 1, . . . ,m, i 6= j, (8)

and
F(y) :=

K∑
k=1

dk cos

(
2πkt

T̃

)
+ ek sin

(
2πkt

T̃

)
, (9)

with unknowns c = {a0, ai, bi, cij, dk, ek}, i, j = 1, . . . ,m(= 30), i 6= j, and
k = 1, . . . ,K(= 25) defined from

y′ = Ac, (10)

where y′ is approximated with the forward finite difference over [0, T̃ ] for which the leading
PCs (computed from the reference solution) are available.
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Having approximated F(y), we solve the reconstructed dynamical system

z′(t) = P(z) + F(z), z ∈ Rm, t ∈ [0, T ], T > T̃ . (11)

Once z(t) is available we compute x(t) as follows:

x(t) ≈
m∑
i=1

zi(t)Ei , (12)

with Ei and zi being the i-th leading EOF and PC, respectively.
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Having approximated F(y), we solve the reconstructed dynamical system

z′(t) = P(z) + F(z), z ∈ Rm, t ∈ [0, T ], T > T̃ . (13)

Once z(t) is available we compute x(t) as follows:

x(t) ≈
m∑
i=1

zi(t)Ei , (14)

with Ei and zi being the i-th leading EOF and PC, respectively.
Adaptive nudging. In order to stabilize the numerical integration we use adaptive nudging:

z′(t) = P(z) + F(z) + η(ti)

 1

N

∑
k∈U(z(t))

y(tk)− z(t)

, t ∈ [0, T ] , (15)

where U(z(t)) is a neighbourhood of z(t), and

η(ti) =


η(ti−1) + ηh if σ(z(ti)) > maxt∈[0,T̃ ] σ(y(t)),

η(ti−1)− ηh if σ(z(ti)) ≤ maxt∈[0,T̃ ] σ(y(t)), i = 1, 2, . . .

0 if η(ti−1)− ηh < 0.

(16)

with σ being the standard deviation, ηh = 0.001, and η(t0) = 0.
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Multilayer QG equations (idealized Gulf Stream)
A 3-layer QG model for PV anomaly q = (q1, q2, q3) in Ω:

∂tqj + J(ψj, qj + βy) = δ1jFw − δj3 µ∇2ψj + ν∇4ψj, j = 1, 2, 3 , (17)

where J(f, g) = fxgy − fygx, δij is the Kronecker symbol, and ψ = (ψ1, ψ2, ψ3) is the
velocity streamfunction.

Fw =

{
−1.80π τ0 sin (πy/y0) , y ∈ [0, y0),
−2.22π τ0 sin (π(y − y0)/(L− y0)) , y ∈ [y0, L].

q and ψ are coupled through the system of elliptic equations:

q = ∇2ψ − Sψ . (18)

System (17)-(18) is augmented with the integral mass conservation constraint:

∂t
x

Ω

(ψj − ψj+1) dydx = 0, j = 1, 2 (19)

with the zero initial condition, and with the partial-slip lateral boundary condition:(
∂nnψ − α−1∂nψ

) ∣∣∣
∂Ω

= 0 . (20)
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Multilayer QG equations (idealized Gulf Stream)

Reference solution: 512× 512→ 128× 128
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Multilayer QG equations (idealized Gulf Stream)

Reference solution: 512× 512→ 128× 128
Modelled solution: 128× 128
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Multilayer QG equations (idealized Gulf Stream)

Reference solution: 512× 512→ 128× 128 The dimensionality is
Modelled solution: 128× 128 reduced by a factor of
Hyper-parameterized solution: 128× 128 more than 500
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Constrained dynamics
The idea of the method is to constrain the modelled solution to the reference phase space.
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Constrained dynamics
The idea of the method is to constrain the modelled solution to the reference phase space.
As an example, we consider the Lorenz 63 system:

x′(t) = F(x(t)), F :=

 σ(y − x)
x(ρ− z)− y
xy − βz

 ,

subject to g(x) := x2 + y2 + z2 ≤ r2.
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Constrained dynamics
The idea of the method is to constrain the modelled solution to the reference phase space.
As an example, we consider the Lorenz 63 system:

x′(t) = F(x(t)), F :=

 σ(y − x)
x(ρ− z)− y
xy − βz

 ,

subject to g(x) := x2 + y2 + z2 ≤ r2.
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Constrained dynamics
The idea of the method is to constrain the modelled solution to the reference phase space.
As an example, we consider the Lorenz 63 system:

x′(t) = F(x(t)), F :=

 σ(y − x)
x(ρ− z)− y
xy − βz

 ,

subject to g(x) := x2 + y2 + z2 ≤ r2.
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Multilayer QG equations (channel flow)

Reference solution: 512× 256→ 128× 64 ν = 25
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Multilayer QG equations (channel flow)

Reference solution: 512× 256→ 128× 64 ν = 25
Modelled solution: 128× 64 ν = 250
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Multilayer QG equations (channel flow)

Reference solution: 512× 256→ 128× 64 ν = 25
Modelled solution: 128× 64 ν = 250
Hyper-parameterized solution: 128× 64 ν = 250
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ADVANTAGES OF THE
HYPER-PARAMETERIZATION APPROACH

• Model choice flexibility (from PDD to HDD)

• Works for both idealized and realistic ocean flows

• Does not require knowledge of physics

• Natural ease of use with comprehensive ocean models

• Can use the reference solution and measurements as input data

• Well-suited for generating ensembles of solutions

• Offers several orders of magnitude acceleration

• Easy to implement
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