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ABSTRACT

Figure is a modified version of a figure from Gray et al., 2010
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In this work, we derive a particle based stochastic model for number concentration 
and liquid water content using the same assumptions as Wacker and Seifert (2001):

Ø Extension of definitions to infinitesimally small length scales
Ø Easily generalizable to more complex and realistic dynamics and hydrometeor 

geometries 
Ø Explicit distinction between stochastic and deterministic quantities allowing for 

direct calculation of unresolved scales error covariance matrices
Ø first DA results considering approximate observation error correlations

We construct a particle based model for liquid water content L and number density 
N by replacing the distribution function in the derivation of the model presented in [1] 
by a (locally finite) counting measure (see e.g. [2] for mathematical background)
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with 𝑧 denoting height, 𝐵/(𝑥) a ball of radius 𝑅 around 𝑥, 𝑃*,+(𝑧) the (𝑥, 𝑦)-plane at 
height 𝑧 and |. |- and |. |. area and volume. This, assuming constant movement of 
hydrometeors with their terminal fall velocity vT, yields the dynamics

𝑧! 𝑡 = 𝑧!1 + 𝑣2 𝐷! 𝑡,
which allows to rewrite 𝐿(𝑧, 𝑡) and 𝑁(𝑧, 𝑡) by expressions of the form
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with 𝑔6 and 𝑓 functions depending on observable and particle geometry. Given 
stochastic initial conditions this allows for the calculation of the expectation value 
E[𝑍&,3] and covariances 𝐶𝑜𝑣 𝑋*,3 , 𝑌+,7 .
Replacing the Ball in the definitions of L and N by other object allows to treat arbitrary 
geometries.

We calculate the liquid water content and number density profiles for different particle 
geometries assuming volume equal to spheres with diameters distributed ~𝑒48 (: 

Data assimilation experiments are carried out, using
§ Truth run (toy model or reference model from [1] with Gaussian noise)
§ Time evolution of model using two-moment-scheme from [1]
§ DA employing EnKF or LETKF

Truth generated by toy model. 
DA results with LETKF.

Truth generated by reference
model of [1]. DA results with

LETKF. 

Liquid water content for
spherical hydrometeors with λ =

70 #
9

Number density for spherical
hydrometeors with λ = 70 #

9

Liquid water content for
cylindrical hydrometeors with

λ = 500 #
9

Number density content for
cylindrical hydrometeors with

λ = 500 #
9

We can calculate the error covariance matrices associated with liquid water content and number 
density profiles for different particle geometries. 

Correlation profile for
cylindrical

hydrometeors with
ϕ = 90°

Correlation profile for
cylindrical

hydrometeors with
ϕ ~ 𝑈([0°, 90°])

Correlation profile for
spherical

hydrometeors

Large scale structure of the (N,N)-part of
the correlation matrix for spherical
hydrometeors

To calculate the profiles for cylindrical hydrometeors, we assume the axis ratios to be 
following the power laws given in [3] and the terminal fall velocities by the equations 
given in [4] : Topics of  interest for future research include

§ Improvement of DA experiments
§ Generalization to more realistic dynamics (possibly stochastic); interactions between and 

creation and destruction of particles
§ Inclusion of observation operators
§ Modelling e.g., of rhiming by going from indicator functions to finitely supported density 

functions
§ Searching for analytic solutions to obtained equations
§ Link to (and perhaps application of) existing mathematical theory

Results
§ Distinction between deterministic and stochastic quantities allows for calculation of 

expectation values and error covariance matrices
§ In simplified setup: Large scale structure of covariances determined by gravitational sorting, 

small scale structure by hydrometeor geometry 
§ Provision of model with known error covariances and non-Gaussian errors for DA
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