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Different “scaled” bases in one space
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Figure: The same field can be expanded in two basis systems
u =

∑
ukfk =

∑
vkgk, where k is a scaling parameter.
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Different “ordered” bases in one space - WR basis

1) Walsh-Rademacher basis. Spaces of piece-wise constant
functions on [0, 1)d :

W[0,1) ⊂ W[0,2) ⊂ W[0,4) ⊂ W[0,8) ⊂ ... ⊂ W[0,2N) :

⊂ ⊂ ⊂
and so on

Thus, denoting W[2n,2n+1) = W[0,2n+1) ⊖W[0,2n), we can write

W[0,2N) = W[0,1) ⊕W[1,2) ⊕W[2,4) ⊕W[4,8) ⊕ ...⊕W[2N−1,2N).

Then, we take the “ordered” orthonormal Walsh-Rademacher
basis basW[0,2N) = {gk}0⩽|k|<2N , where

basW[2n−1,2n) = {gk}2n−1⩽|k|<2n .

Remark. While W[2n−1,2n) is defined uniquely, {gk}2n−1⩽|k|<2n is

not unique, but the range 2n−1 ⩽ |k| < 2n is unique.
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Different “ordered” bases in one space - F basis
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Figure: 2) Fourier basis in W[0,2N ) is the standard discrete Fourier basis

e ik·x taken at the lattice points {(f ijk )}k∈Zd
2N

extended to the squares

constantly. Again, 0 ⩽ |k| < 2N .
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Different bases give different slopes for random fields
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Figure: Random fields with
∑

|k|=K |uk|2 ≃ Kα in F-basis have different
slope in WR-basis, namely

αb → −1 + log2

∫
[0,π/2]d

|x|1−d+α(1−
∏d

j=1 cos2 xj )dx∫
[0,π/2]d

|x|1−d+α(1−
∏d

j=1 cos2 2xj )
∏d

j=1 cos2 xjdx
, for N → ∞.
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F- and WR-slopes are different but the cumulative energy
is similar. Example - continuous case

0 log2k

log2E

6.5

2.4

cumulative energy

Figure: More complex field. Black dots - continuous F, red - rhombus
WR, blue - triangular WR. Logarithm of L2-norm of the projection on the
scales [0, k) is plotted.
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F- and WR-slopes are different but the cumulative energy
is similar. Example - continuous case

u(x , y) = cos

(
2π · 5x + 4π·7y√

3

)
+

cos

(
2π · 131x + 4π·503y√

3

)
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Figure: Two simple harmonics. Black dots - continuous F, red - rhombus
WR, blue - triangular WR. L2-norm of the projection on the scales [0, k)
is plotted.
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F- and WR-slopes are different but the cumulative energy
is similar. Example - continuous case
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Figure: More complex field. Black dots - continuous F, red - rhombus
WR, blue - triangular WR. Logarithm of L2-norm of the projection on the
scales [0, k) is plotted.
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Reverse case: F-diagnostics of random WR-fields
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Original slopes in
WR-basis are presented
by solid lines, their

F-diagnostics are dots.
2000 random WR-fields
at resolution 256× 256
are generated for each of

the slopes, then the
average of all the

F-diagnostics is taken.

Fourier basis already
“fails” for the slopes

around k−2!
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Practical applications

Figure: Simulations of a zonal flow in a channel. Juricke et al. 202210



Practical applications

Figure: F-diagnostics of energy and dissipation power spectra. Different
methods of interpolations give slightly different results.
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Practical applications
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Figure: Energy and dissipation power spectra computed by the modified
resize-and-average method. Blue points correspond to backscatter
parametrization, red points to the Leith parametrization.
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Conclusion and perspectives

The computation of WR-spectra is almost simple and based on the
ideas: select regions, resize [optional, to resolve k between powers
of 2], and average. Intel IPP provides highly optimized routines for
the image processing which can be adapted for WR-diagnostics.

A generalization of the results to unstructured meshes, to
incomplete (sparse) data - almost done.

More interesting mathematical ideas and beautiful formulas.
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