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Different “scaled” bases in one space
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Figure: The same field can be expanded in two basis systems
u="> ufc = w8k, where k is a scaling parameter.



Different “ordered” bases in one space - WR basis

1) Walsh-Rademacher basis. Spaces of piece-wise constant
functions on [0,1)9:

W[O,l) C W[072) C W[074) C W[(),g) C ... C W[O,2’V) :

C C C ;

Thus, denoting Wion on+1) = Wig 2nt1) © Wi 20), We can write

Wioony = Wio,1) @ Win2) © Wa,4) @ Wiag) © - & Wian-15m).
Then, we take the “ordered” orthonormal Walsh-Rademacher
basis basWg ony = {8k fo<|k|<2n, Where

baSW[Zn—172n) == {gk}2"71<‘k|<2"

Remark. While Won-1 20y is defined uniquely, {gk }on-1<|k|<2n is
not unique, but the range 2"~1 < |k| < 2" is unique.
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Different “ordered” bases in one space - F basis
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Figure: 2) Fourier basis in Wio,2vy is the standard discrete Fourier basis
e™** taken at the lattice points {(f)}cze extended to the squares
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constantly. Again, 0 < |k| < 2",



Different bases give different slopes for random fields
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Figure: Random fields with -, |uk|? ~ K< in F-basis have different

slope in WR-basis, namely
I , \x\17d+"‘(17]_[f’:1 COSQXJ)dX
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F- and WR-slopes are different but the cumulative energy

is similar. Example - continuous case
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Figure: More complex field. Black dots - continuous F, red - rhombus

WR, blue - triangular WR. Logarithm of L2-norm of the projection on the
scales [0, k) is plotted.



F- and WR-slopes are different but the cumulative energy
is similar. Example - continuous case
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Figure: Two simple harmonics. Black dots - continuous F, red - rhombus
WR, blue - triangular WR. L?-norm of the projection on the scales [0, k)
is plotted.



F- and WR-slopes are different but the cumulative energy

is similar. Example - continuous case

log, B/
cccg00000000
o®

2.3 é

6.5 logyk
cumulative energy
Figure: More complex field. Black dots - continuous F, red - rhombus

WR, blue - triangular WR. Logarithm of L2-norm of the projection on the
scales [0, k) is plotted.



Reverse case: F-diagnostics of random WR-fields

logy E(k) 0.5 e
Original slopes in
WR-basis are presented
by solid lines, their
F-diagnostics are dots.
2000 random WR-fields
at resolution 256 x 256
are generated for each of
the slopes, then the
average of all the
F-diagnostics is taken.

Fourier basis already
“fails” for the slopes
around k2!




Practical applications
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Figure: Simulations of a zonal floy)in a channel. Juricke et al. 2022



Practical applications
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Figure: F-diagnostics of energy and dissipation power spectra. Different
methods of interpolations give slighili/ different results.



Practical applications
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Figure: Energy and dissipation power spectra computed by the modified
resize-and-average method. Blue points correspond to backscatter
parametrization, red points to the Leith parametrization.
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Conclusion and perspectives

The computation of WR-spectra is almost simple and based on the
ideas: select regions, resize [optional, to resolve k between powers
of 2], and average. Intel IPP provides highly optimized routines for
the image processing which can be adapted for WR-diagnostics.

A generalization of the results to unstructured meshes, to
incomplete (sparse) data - almost done.

More interesting mathematical ideas and beautiful formulas.
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