Scaling analysis in Fourier and Walsh-Rademacher basis systems

A. A. Kutsenko, K. Bellinghausen, S. Danilov, S. Juricke, and M. Oliver

CU Bremen, KU Ingolstadt, AWI Bremerhaven, Germany

March 28, 2023

1

Different "scaled" bases in one space

Figure: The same field can be expanded in two basis systems $u = \sum u_k f_k = \sum v_k g_k$, where k is a scaling parameter.

Different "ordered" bases in one space - WR basis

1) Walsh-Rademacher basis. Spaces of piece-wise constant functions on $[0,1)^d$:

$$
\mathcal{W}_{[0,1)}\subset\mathcal{W}_{[0,2)}\subset\mathcal{W}_{[0,4)}\subset\mathcal{W}_{[0,8)}\subset...\subset\mathcal{W}_{[0,2^N)}
$$
 :

Thus, denoting $\mathcal{W}_{[2^n,2^{n+1})}=\mathcal{W}_{[0,2^{n+1})}\ominus \mathcal{W}_{[0,2^n)},$ we can write

$$
\mathcal{W}_{[0,2^N)} = \mathcal{W}_{[0,1)} \oplus \mathcal{W}_{[1,2)} \oplus \mathcal{W}_{[2,4)} \oplus \mathcal{W}_{[4,8)} \oplus ... \oplus \mathcal{W}_{[2^{N-1},2^N)}.
$$

Then, we take the "ordered" orthonormal Walsh-Rademacher basis $\mathrm{bas}\mathcal{W}_{[0,2^N)}=\{\mathsf{g}_{\mathsf{k}}\}_{0\leqslant |\mathsf{k}|<2^N}$, where

$$
bas \mathcal{W}_{[2^{n-1},2^n)} = \{g_{\mathbf{k}}\}_{2^{n-1} \leqslant |\mathbf{k}| < 2^n}.
$$

Remark. While $\mathcal{W}_{[2^{n-1}, 2^n)}$ is defined uniquely, $\{g_{\mathbf{k}}\}_{2^{n-1} \leqslant |\mathbf{k}| < 2^n}$ is not unique, but the range $2^{n-1} \leqslant |\mathbf{k}| < 2^n$ is unique.

Different "ordered" bases in one space - F basis

Figure: 2) Fourier basis in $\mathcal{W}_{[0,2^N)}$ is the standard discrete Fourier basis $e^{i\textbf{k}\cdot\textbf{x}}$ taken at the lattice points $\{(f^{ij}_{\textbf{k}})\}_{\textbf{k}\in\mathbb{Z}_{2^N}^d}$ extended to the squares constantly. Again, $0 \leqslant |\mathbf{k}| < 2^N$.

Different bases give different slopes for random fields

Figure: Random fields with $\sum_{|\mathbf{k}|=K} |u_{\mathbf{k}}|^2 \simeq K^{\alpha}$ in F-basis have different slope in WR-basis, namely $\alpha_{\rm b} \rightarrow -1 + \log_2$ $\int_{[0,\pi/2]^d} |x|^{1-d+\alpha} (1-\prod_{j=1}^d \cos^2 x_j) dx$ $\frac{|0,\pi/2|^d}{\int |x|^{1-d+\alpha}(1-\prod_{j=1}^d\cos^22x_j)\prod_{j=1}^d\cos^2x_jd\mathbf{x}}, \text{ for } \mathcal{N}\rightarrow\infty.$ $[0, \pi/2]^{d}$

F- and WR-slopes are different but the cumulative energy is similar. Example - continuous case

cumulative energy

Figure: More complex field. Black dots - continuous F, red - rhombus WR, blue - triangular WR. Logarithm of L^2 -norm of the projection on the scales $[0, k)$ is plotted.

F- and WR-slopes are different but the cumulative energy is similar. Example - continuous case

Figure: Two simple harmonics. Black dots - continuous F, red - rhombus WR, blue - triangular WR. L^2 -norm of the projection on the scales $[0, k)$ is plotted.

F- and WR-slopes are different but the cumulative energy is similar. Example - continuous case

cumulative energy

Figure: More complex field. Black dots - continuous F, red - rhombus WR, blue - triangular WR. Logarithm of L^2 -norm of the projection on the scales $[0, k)$ is plotted.

Reverse case: F-diagnostics of random WR-fields

Original slopes in WR-basis are presented by solid lines, their F-diagnostics are dots. 2000 random WR-fields at resolution 256 \times 256 are generated for each of the slopes, then the average of all the F-diagnostics is taken.

Fourier basis already "fails" for the slopes around k^{-2} !

Practical applications

Figure: Simulations of a zonal flom in a channel. Juricke et al. 2022

Practical applications

Figure: F-diagnostics of energy and dissipation power spectra. Different methods of interpolations give slightly different results.

Practical applications

Figure: Energy and dissipation power spectra computed by the modified resize-and-average method. Blue points correspond to backscatter parametrization, red points to the Leith parametrization.

The computation of WR-spectra is almost simple and based on the ideas: select regions, resize [optional, to resolve k between powers of 2], and average. Intel IPP provides highly optimized routines for the image processing which can be adapted for WR-diagnostics.

A generalization of the results to unstructured meshes, to incomplete (sparse) data - almost done.

More interesting mathematical ideas and beautiful formulas.