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Need for uncertainty-awareness of ML systems
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Classification versus regression
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Lack of uncertainty-awareness of ML systems

Predictions by EfficientNet on test images from ImageNet: For the left image, the
neural network predicts “typewriter keyboard” with certainty 83.14 %, for the right
image “stone wall” with certainty 87.63 %.

typewriter keyboard stone wall
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Calibration: improving probability estimates

Examples: bias toward extreme probabilities (left), systematic overestimation (right)

A (binary) classifier is calibrated if

P
(
y | p̂(y) = α

)
= α .
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Calibration: improving probability estimates

Example: calibration through isotonic regression or beta calibration (Kull et al., 2017)
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Uncertainty representation and levels of uncertainty-awareness

Y = {y1, y2, y3}, e.g. {win, loss, tie}
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Aleatoric versus epistemic uncertainty

Aleatoric (statistical) uncertainty

I refers to the notion of randomness, that is, the variability in the
outcome which is due to inherently random effects,

I is a property of the data-generating process,

I and as such irreducible.

Epistemic (systematic) uncertainty

I refers to uncertainty caused by a lack of knowledge, i.e.,

I to the epistemic state of the agent (e.g., learning algorithm),

I can in principle be reduced on the basis of additional information.
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Aleatoric versus epistemic uncertainty in ML

Both types of uncertainty also play an important role in ML, where the learner’s state
of knowledge strongly depends on the amount of data seen so far ...
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Aleatoric versus epistemic uncertainty in ML

... but also on the underlying model assumptions:

strong prior (linear model) weaker prior (nonlinear model)
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Predictive uncertainty

In the standard setting of supervised learning, we are mainly interested in
(per-instance) predictive uncertainty: Instead of a deterministic prediction ŷ of the
outcome for a query instance x , we seek a prediction

Q = h(x)

adequately representing the learner’s uncertainty about the prediction.

Various approaches have been proposed in the literature:

I Bayesian inference

I Validation and self-assessment

I Direct uncertainty prediction
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The Bayesian approach: posterior predictive distribution

Model uncertainty translates into predictive uncertainty:
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Ensemble methods

Model uncertainty translates into predictive uncertainty:
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Example of second-order prediction with Dirichlet distributions
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Direct (epistemic) uncertainty prediction through loss minimisation

Given training data D =
{

(x i , yi )
}N
i=1
⊂ X × Y, can we train a predictor

g : X −→ P
(
P(Y)

)
via (variants of) empirical risk minimisation (ERM), i.e.,

g = arg min
h

N∑
i=1

L2 (h(x i ), yi ) ,

with a suitable second-order loss function

L2 : P
(
P(Y)

)
× Y −→ R ,

such that the predictor represents its epistemic uncertainty in a “faithful” way?
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Direct (epistemic) uncertainty prediction through loss minimisation

Negative results by Bengs et al. (2022), Meinert et al. (2022) ...

For first-order predictions p̂ ∈ P(Y), there are loss functions (proper scoring rules)

L1 : P(Y)× Y −→ R

that incentivise the learner to predict ground-truth probabilities P(y | x).

For second-order predictions Q̂ ∈ P(P(Y)), corresponding losses

L2 : P
(
P(Y)

)
× Y −→ R

do not seem to exist.
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Validation and self-assessment

In addition to learning a predictor h on X , the learner also “tests itself”, i.e., it
figures out how that predictor performs on out-of-sample data.

Example: Estimation of error rate via (cross-)validation (e.g., make mistake in
≈ 20% of the cases).

Yet, this is a global performance measure, not per-instance (e.g., per-patient).

Truly per-instance uncertainty estimation appears to be difficult and indeed has
theoretical limits (Barber et al., 2021).
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Conformal prediction

Conformal prediction (Balasubramanian et al., 2014) is a framework for reliable
prediction that is rooted in classical frequentist statistics and hypothesis testing.

Instead of point predictions, CP makes set-valued predictions covering the true
outcome with high probability.

Guaranteed validity: probability of an invalid prediction (y 6∈ Y ) is (asymptotically)
bounded by ε > 0.
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Conformal prediction

CP uses a scoring function that assigns a degree of nonconformity to tuples
consisting of query x and hypothetical outcome ŷ :

s = f (x , ŷ)

On calibration data, CP finds a threshold α0, such that

P
(
f (x , y) ≤ α0

)
≥ 1− ε

if (x , y) is a real observation.

This allows for constructing (valid) prediction sets:

Ŷ (x) =
{
ŷ ∈ Y | f (x , ŷ) ≤ α0

}
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Uncertainty quantification

Uncertainty quantification (UQ) seeks to measure the amount of total, aleatoric,
and epistemic uncertainty of a prediction Q in terms of numerical measures,
axiomatically justified, and ideally such that

TU(Q) = AU(Q) + EU(Q) .
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Uncertainty quantification

The distinction between aleatoric and epistemic uncertainty can be difficult.

Predict the next number: 116, 304, 194, 341, 224, 654, 609, 625, 533, 91, 205,
35, 527, 611, 128, 235, 348, 912, 582, 52, 672, 20, 856, 904, 628, 273, 615, 105,
610, 862, 384, 705, 73, 794, 775, 156, ??

x ← x × 237 mod 971

Epistemic uncertainty implies uncertainty about the data-generating process,
and hence about the (true) aleatoric uncertainty.
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Uncertainty quantification

Common approach for second-order probabilities Q ∈ P(P(Y)), where each model θ
induces a distribution pθ,x ∈ P(Y), and the model itself is a RV Θ ∼ Q:

Θ ∼ Q −→ Y |x ∼ Pθ,x

I TU = Shannon entropy H(Y | x) of the probabilistic prediction Y | x ∼ Px , where Px
is the predictive distribution (averaged over models)

Y | x ∼ Px =

∫
pθ dQ(θ) ∈ P(Y) .

I AU = conditional entropy (of prediction given model)

H(Y | x , Θ) =

∫
H(Y | x , θ) dQ(θ)

I EU = mutual information I (Y , Θ) of prediction Y and model Θ.

Recently criticised by H. (2022) ...
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Summary and outlook

Learning reliable predictors that represent their uncertainty in a faithful way is an
important task, but also challenging, both conceptually and computationally.

Distinguishing different types of uncertainty, aleatoric and epistemic, is useful,
though it seems that second-order uncertainty is hard to tackle.

Quantifying predictive uncertainty in a theoretically sound manner, and
disentangling total into aleatoric and epistemic uncertainty, is difficult, too.

Various other open problems: model uncertainty, generalised settings (eg., OOD
data), evaluation, other forms of uncertainty, applications, etc.
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