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SWOT 1st Light 2023-03-24 Gulf Stream topography
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Multi-scale analysis is required for modern satellite data

SAR-Interferometry : Colocated all-weather heights and
SAR imagery for ocean front detection
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Upper panel : modelled surface currents, SST & vorticity across the Gulf Stream
Lower panel : simulated SWOT swath of SSH, geostrophic currents and SAR surface roughness

Figure: SWOT will observe many different interacting fluid components.
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Oceans have Magnascales, Mesoscales and Sub-mesoscales
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Figure: Oceanic Magna-, Meso- and Submeso scales, cf. Dickey & Bidigare [2005]
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Atmosphere Length/Time scale models (Klein ARFM2010)
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Figure: Magna-, Meso- and Submeso atmospheric phenomena.
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Multiscale analysis involves multiple levels of description

: . , 2
At el S A S (1) Fine-scale ‘Truth’ (1024°)
- e.g., from fluid PDE simulations
s A ‘ Oiu~+ u-Vu=-Vp, divu =0.
71 7| 7 7| 2
1 /L L (2) Coarse—s.cale avg PDE (64 )
/1 e.g. space/time average velocity,
. ] : : u(x,x,t) == u(x.x.x. t)
' | This approx introduces uncertainty
7 A of closure problems v - Vu(x, x, t).
¥ )4

(3) Coarser-scale simulation (42)

e.g. Large Eddy Simulation (LES)
LES introduces more uncertainty

—— due to closure problems.
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CoM has some advantages for multiscale fluid interactions

@ Why? Satellite data observes effects of multiscale fluid interactions.
Regarding multiscale fluid interactions as CoM is natural, because for
smaller scale motions the larger ones are Lagrangian reference frames.

@ How? Euler-Poincaré variational principles for CoM provide
multicomponent, multiphysics, multiscale, Hamiltonian fluid models.
An advantage is that they are very general and coordinate free.

A disadvantage is that they require averaging over the smaller scales.

@ What? Multiscale CoM models can be applied either by representing
expected phenomena, or by projection onto orthonormal modes.

Imperial College
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Why? How? What? and What Next? Details for CoM

@ Why CoM?
CoM fluid dynamics describes nested interactions of multiple DoF.
The nested physics has a self-similar Lie algebraic structure

s=g01® <V1®(92®(V269(G3® V3) ) )
The nested pattern reveals how to make further extensions of DOF.

@ How does CoM work, mathematically?
Larger scales sweep smaller ones by push-forward of CoM (g1£2)x.

@ What results arise from the CoM approach?
CoM variational principle yields coordinate-free space-time averaged
models that possess a physically sensible Kelvin circulation theorem.

@ What next for CoM?
Still in progress! Disadvantage: averaging limits applicability. [mperial Colege

London
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GLM defines fluid velocity at displaced oscillating position

Recall that GLM defines the fluid velocity as uS(x, t) := u(x + &(x, t, t/e), t) at the
displaced oscillating position x; + &(x¢, t, t/€) where x; is evaluated at the current

position x on a Lagrangian mean path o
L4
,"x:g(t) :xo
L4

E=x5-x

-xo
DLxé Dt
ot 1= DX D (et /0)) = w1 (s, £/)
. Dt 9 L 0O . D¢
with E—a—i—u-& and u.—ﬁ.
GLM then defines the Lagrangian mean velocity as uf(x t)=u (X t) (t)g Ir2| ol
perla ollege

where (-) is a time, or phase average at fixed Eulerian coordinate x. ondor

Darryl Holm Imperial College Ingolstadt lecture Multiscale Fluid Interactions 10/26



GLM arises from the tangent of composition of two maps

Xt = gtxo = (Id —+ OZET_-) o gtxo = Xt + OZS(Xt, t) y

Reference Mean Current
&l [NA TN
AN NEPZY

gl 11—
Xo X X
dXt 1 dXt 8£ dXJ
Ut(Xt, t) = ar = gt8; Xt = ar + Oé<0t€(xt> ) + 7@)

) 0
= g’tg;lxt + a(@tﬁ(xt, t) + aj (Etgfli)>

t

Imperial College

= up(xe, t) + a%g(xt, t) ‘ Recovers GLM velocity. ‘ ondor
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Example: CoM result for wave-current interaction

In Lie-Poisson bracket form, the wave-current equations studied lately is

ad*Dm OoD Oop OoJ OoN 5H/6m

m
5 D EDD 0 0 0 0 SH/5D
5 o= o 0 0 0 0 §H/6p |,
J ad~J 0 0 ad~J OoN| |6H/6J
O [}
N LN 0 0 LN 0 dH/6N

Fluid variables are: momentum m = Dpu, with Eulerian velocity u, scalar
mass density p and volume form D.

Wave variables are canonically conjugate, (¢, N) by J := NV¢.

The Lie-Poisson bracket for wave-current dynamics is dual to Lie algebra,

s=010© <V1€B(92®V2))-
Hence, the Lie-Poisson bracket {F, H} satisfies the Jacobi identity. mpera colige
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Keep this figure in mind

: ‘ v 2
Aok S (1) Fine-scale ‘Truth’ (1024¢)
e.g., from fluid PDE simulations
A A A AL Otu+u-Vu=—-Vp, divu=0

#+—#  (2) Coarse-scale avg PDE (64?)

1T 1A e.g. space/time average velocity, u
/‘n’ L1 | This approx introduces uncertainty.
\ !
8 A A
| )’

(3) Coarser-scale simulation (42)

/ e.g. Large Eddy Simulation (LES)

| LES introduces more uncertainty.
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Now consider composition of multiple maps g1 . .. gn

If the Lagrangian had relabelling symmetry for each successive map, then
the action integral in Hamilton's principle would take the form,!

%]
5:/ L(g1, &1, 3% g2, 82,35 23. £3. 2%; - . . BN, 8N, Ay ) dt
t1

[%]

5=/ L(gig; t a0t (8285 Har s (338 Mer s
t

1

(g385 )&y 'ar s (g5 gy ter b dt

t
Sred =: / uq, a1; U2g1_1,32g1_1; U3g2_1g1_1.a3g2_1g1_1; ..)dt
t1

[ %)
=: / U(u1, a1; gretn, 814a2; (8182)- U3, (g1&2)23; ... ) dt
t1

We restrict to the case that (ux := gkgk_l, ay = a(l)gk_l), for k =1,2,3.
Colour coded as k = 1, k = 2, k = 3. Imperial College

London

Colours denote spatial domains. E.g., us(xi, 2, x3, t) and dVi= dxi dx3 c; .
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Euler-Poincaré variational relations for CoM dynamics

Variational relations for nested degrees of freedom exist,
because of a Lie chain rule (LCR). E.g., in varying advected quantities,

Sak(t) =: a(e) == ean(t,9)] g = (8hu(8)])
By LCR = =L, —1pyak(t) = =Ly (ryan(t),  wi = gigi (1)
Euler-Poincaré variational relations for velocities uy := g'kgk_1 = Gk+Ek

are obtained from equality of cross derivatives g, = g," and LCR.
Namely,

vy — (0 — ady, )wq = 0,
g].* (Ué - (at - adul)W2 + »Cwl U2) = 07
(gng)*(Ué - (()t - adu1+u2)W3 + £W1+W2 U3) =0.
e The further sequence of EP variational relations follows a clear pattern.

e Larger scales sweep smaller ones by CoM push-forward (g1 gp),. mperial College

London
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Hamilton's variational principle 6S,.4 = 0 for multiple CoM

Hamilton's principle for CoM velocity variations v, u5, and i/ yields

YN
0—5Sred_/t1 <5Ul’ (at—adul)W1>L2

Y4
+< 9 (8t_adul)w2+£W1u2>

5”2 12

Y4
+<~ ) (()fadu11u2)W3+['W1)W2U3>
()U3 L2

ol ol

Y4
+ <(533 9 £W1+W2vW3a3> dt

L2
Three EP equations follow by collecting coefficients of wi, wp, and ws
then setting each coefficient equal to zero. imperial Colege
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Three (colour-coded) Euler-Poincaré motion equations

EP equations for k = 1,2, 3 emerge after collecting coefficients of wy, wo,
ws with diamond operation (o) defined by (boa, w), = (b, —Lya),,.
Averaging over successive scales [Holm-Tronci 2012] leads to

0= 55rsd =

Suy du3

— -
A Lo+ Loa+ Lo+ Loas,m
dap daz )
L

. o ot 5t 5t
+ <(6t +adul+u2)67u2 — 5732 2 = 53 o uz — 523 & as, we -
) Y4 Y4
) d:; ur ) = T = 3 3 dt
+<((z+a iz ")()U3 52 ¢ W3>L2

Aucxiliary relations hold for the multiscale advected quantities:

L 0 o 0 L 0
a; 1= 1435, ay = (g182)«a3, a3 = (818283)+a3
atal = _£u1 ai, a1'32 = _‘c(u1+u2)327 Ota3 - 7E(U1+U2+U'3)a3' Imperial College
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Legendre transform = nested Hamiltonian formulation

The Euler-Poincaré equations may be displayed in Lie-Poisson matrix form
with reduced Hamiltonian h(my, ax) : M (X} x V) — R with my := ¢

m adf m
ai ﬁ]:]al
o my _ Csz
a ﬁDaz
m3 ’CDm3
& £Dag

O¢ar

0

0
0
0
0

= Su

D S my
0
ad"D mo
[,Daz
CDmg
EDag

DO ar D S m3
0 0
0o a W
0 0
0 adi m3
0 L‘Daa

Sh
DQ as m = u
Sh st
0 e Say
— 5ho_
DQ as Smy uz
sho st
0 582”_ dap
dh __
U o az Smy U3
Sh oL
0 daz da3

The matrix operator defines a Lie-Poisson bracket {f, h} = (u, [df, dh])
on the dual of the following nested semidirect product Lie algebra

5:91@(vl@(gz@(vz@(03®V3)))-

The pattern for further extension to additional DoF is clear.

It shows a sense of Lie algebraic self similarity.
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What's next? Let's discuss!

@ Back reaction (scatter) via feedback in Kelvin circulation theorems

@ Littlewood-Paley Fourier-shell decompositions of interacting fluid
scales. Cf. Holm-Tronci [2012]

@ Geometric understanding of multiscale fluid interaction dynamics:
Each successively smaller scale regards the previous larger scale as a
Lagrange coordinate.

@ The theoretical results for back-reaction of small scales on large scales
may guide stochastic models of effects of small scales on large scales.

@ A geometric stochastic approach for multiscale fluid modelling may be
introduced via a multiscale Kelvin's circulation theorem.

Imperial College
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Back reaction (scattering) in Kelvin circulation theorems

Deterministic back reaction (scattering) would require modelling the
averages of 6 sub-grid scale fluctuating quantities in 2 Kelvin theorems.

d Y4 50
— @ Dit— =@ DIt — o 5
dt é(ul)l du é(m)l (531 O At gy O U2 5 © 22

+M<>U3+M<>33>,

ous das

d b4 Y, _
— D1 :55 D_1(<>32+7)[<>U3—|—5V<>a3>7
dt C(U1+U2)2 Ot c(u1-&-u2)2 dap ous da3

d Y4 Y4
e 371.7 = ¢ D;l - ¢ as.
dt c(ur+uatus) ou3 c(ur+up+u3) 0as

(at + EU1)D1 =0, (af + £U1+U2)D2 =0, ((.)f + CU1+U2+U3)D3 =0.

Imperial College
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Littlewood-Paley Fourier-shell averages preserve the Kelvin theorem.
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Littlewood-Paley Fourier avg preserves Kelvin's theorem

Figure: k =1, k =2, and k = 3 scales in Fourier space.

Imperial College

Holm-Tronci [2012] provide details of LP fluid averaging. | "
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The SALT procedure also involves 3 levels of description

3

Darryl Holm Imperial College

(1) Fine-scale ‘Truth' (10242)
e.g., from fluid PDE simulations
Otu+u-Vu=—-Vp,divu =0

(2) Coarse-scale SALT SPDE (642)
for stochastic 2D Euler velocity, u
du+dx; - Vu+ uJ-detj = —Vpdt
dx; = ue(xe)dt + > Ei(xe) o dW]
Stochastic advection velocity, dx;
This step quantifies uncertainty.

(3) Particle filtering of data (4?)
dx; = up(xe)dt + 3 &i(xe) o dW
dy; = a(x¢)dt + b(x¢) o dB;

This step reduces uncertainty.
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Alternative: Stochastic geometric mechanics approach

One could model effects of smaller scales on larger scales by introducing
SALT noise in Kelvin's circulation laws, specifically by taking the
small-scale effects of k =2 and k = 3 as stochastic processes,

dxg = ugdt + E(x) 0 dW, for k=2,k =3.

Stochastic Advection by Lie Transport (SALT) in Kelvin's theorem is 2
ol Y4
dyﬁ by 255 Dy (Oal+<2(X)Oth+Q3(X)Oth):
C(dxl) 6“1 C(dxl) 53]_

dyf D;lﬁ = 55 Dyt (M o ap + (3(x) o d\/\/t> :
c(dxatdx) - 02 Jo(dxq+de) dap

and the volume elements D1, D», D3 are stochastically advected, as

(d + del)Dl =0, (d -+ delerxz)DZ =0.

Imperlal College
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What have we been discussing in this talk today?

(6)

Began by formulating GLM as the composition by push-forward of two
smooth invertible maps in Hamilton's principle for Eulerian fluids.

Extended CoM so that internal dynamics of several successive fluid
components are transported by the combined actions of those that
came before and they combine to transport all those that come after.

The advantage of the considerations here is their generality.
CoM vyields coordinate-free representations of multicomponent,
multiphysics non-dissipative fluid dynamics common in oceanic flows.

The preservation of Kelvin's theorem in the CoM geometric averaging
and closure approach also provides a basis for stochastic modelling.
Namely, it identifies what physical terms are modelled by stochasticity.

Imperial College
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What's next? Let's discuss!
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Thanks for listening!

More papers along these lines with up-to-date references are at ORCID:

https://orcid.org/0000-0001-6362-9912
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