Multiscale Fluid Interactions by Composition of Maps (C◦M)

Speaker: Darryl D Holm, Co-authors: R. Hu and O.D. Street Mathematics Department, Imperial College London <https://www.imperial.ac.uk/ocean-dynamics-synergy/>

TRR 165/181 Joint Conference 29 March 2023

Imperial College London

 QQ

Darryl Holm Imperial College [Ingolstadt lecture](#page-25-0) Multiscale Fluid Interactions 1/26

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

SWOT 1st Light 2023-03-24 Gulf Stream topography

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 3/26

 $2Q$

Imperial College

London

Multi-scale analysis is required for modern satellite data

Figure: SWOT will observe many different interacting fluid components.

London

 QQ

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 4/26

Oceans have Magnascales, Mesoscales and Sub-mesoscales

Figure: Oceanic Magna-, Meso- and Submeso scales, cf. Dickey & Bidigare [2005] London

 QQ

Atmosphere Length/Time scale models (Klein ARFM2010)

 (1) Fine-scale 'Truth' (1024^2) e.g., from fluid PDE simulations $\partial_t u + u \cdot \nabla u = -\nabla p$, div $u = 0$.

 (2) Coarse-scale avg PDE (64^2) e.g. space/time average velocity, $u(x, x, t) := u(x, x, x, t)$ This approx introduces uncertainty of closure problems $u \cdot \nabla u(x, x, t)$. (3) Coarser-scale simulation (4^2) e.g. Large Eddy Simulation (LES) LES introduces more uncertainty due to closure problems.

Imperial College

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

- Why? Satellite data observes effects of multiscale fluid interactions. Regarding multiscale fluid interactions as C◦M is natural, because for smaller scale motions the larger ones are Lagrangian reference frames.
- How? Euler-Poincaré variational principles for C∘M provide multicomponent, multiphysics, multiscale, Hamiltonian fluid models. An advantage is that they are very general and coordinate free. A disadvantage is that they require averaging over the smaller scales.
- What? Multiscale C∘M models can be applied either by representing expected phenomena, or by projection onto orthonormal modes.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Imperial College ondor

 Ω

(i) Why C◦M?

C◦M fluid dynamics describes nested interactions of multiple DoF. The nested physics has a self-similar Lie algebraic structure

$$
\mathfrak{s} = \mathfrak{g}_1 \circledS \Big(V_1 \oplus \big(\mathfrak{g}_2 \circledS (V_2 \oplus \big(\mathfrak{g}_3 \circledS V_3 \big) \big) \Big).
$$

The nested pattern reveals how to make further extensions of DOF.

- How does C◦M work, mathematically? Larger scales sweep smaller ones by *push-forward* of C◦M $(g_1g_2)_*.$
- **■** What results arise from the C◦M approach? C∘M variational principle yields **coordinate-free** space-time averaged models that possess a physically sensible Kelvin circulation theorem.

<u>■</u> What next for C◦M?

Still in progress! Disadvantage: averaging limits applicability. **Imperial College** Londor

 QQ

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

GLM defines fluid velocity at displaced oscillating position

Recall that GLM defines the fluid velocity as $\mathbf{u}^{\xi}(\mathbf{x},t) := \mathbf{u}(\mathbf{x} + \boldsymbol{\xi}(\mathbf{x},t,t/\epsilon),t)$ at the displaced oscillating position $x_t + \xi(x_t, t, t/\epsilon)$ where x_t is evaluated at the current position x on a Lagrangian mean path

GLM arises from the tangent of composition of two maps

$$
\mathbf{X}_t = g_t \mathbf{x}_0 = (Id + \alpha \Xi_t) \circ \bar{g}_t \mathbf{x}_0 =: \mathbf{x}_t + \alpha \xi(\mathbf{x}_t, t),
$$

$$
U_t(\mathbf{X}_t, t) := \frac{d\mathbf{X}_t}{dt} = \dot{g}_t g_t^{-1} \mathbf{X}_t = \frac{d\mathbf{x}_t}{dt} + \alpha \Big(\partial_t \xi(\mathbf{x}_t, t) + \frac{\partial \xi}{\partial x_t^j} \frac{d x_t^j}{dt} \Big)
$$

$$
= \dot{\bar{g}}_t \bar{g}_t^{-1} \mathbf{x}_t + \alpha \Big(\partial_t \xi(\mathbf{x}_t, t) + \frac{\partial \xi}{\partial x_t^j} \cdot (\dot{\bar{g}}_t \bar{g}_t^{-1} x_t^j) \Big)
$$

$$
=: \mathbf{u}_L(\mathbf{x}_t, t) + \alpha \frac{d}{dt} \xi(\mathbf{x}_t, t) \underbrace{\Big[\text{Recovery GLM velocity.} \Big] \text{Imperial College}}_{\text{London}}
$$

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 11/26

Example: C◦M result for wave-current interaction

In Lie-Poisson bracket form, the wave-current equations studied lately is

$$
\frac{\partial}{\partial t}\begin{bmatrix} m \\ D \\ \rho \\ J \\ N \end{bmatrix} = -\begin{bmatrix} \text{ad}^*_{\square} m & \square \diamond D & \square \diamond \rho & \square \diamond J & \square \diamond N \\ \mathcal{L}_{\square} D & 0 & 0 & 0 & 0 \\ \text{ad}^*_{\square} J & 0 & 0 & 0 & 0 \\ \text{ad}^*_{\square} J & 0 & 0 & \text{ad}^*_{\square} J & \square \diamond N \\ \mathcal{L}_{\square} N & 0 & 0 & \mathcal{L}_{\square} N & 0 \end{bmatrix} \begin{bmatrix} \delta H/\delta m \\ \delta H/\delta D \\ \delta H/\delta \rho \\ \delta H/\delta J \\ \delta H/\delta N \end{bmatrix}
$$

Fluid variables are: momentum $m = D \rho u$, with Eulerian velocity u, scalar mass density ρ and volume form D .

Wave variables are canonically conjugate, (ϕ, N) by $J := N \nabla \phi$.

The Lie-Poisson bracket for wave-current dynamics is dual to Lie algebra,

$$
\mathfrak{s}=\mathfrak{g}_1\circledS\left(V_1\oplus\left(\mathfrak{g}_2\circledS\ V_2\ \right)\right).
$$

Hence, the Lie-Poisson bracket $\{F, H\}$ satisfies the Jacobi identity. Imperial College

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

,

 (1) Fine-scale 'Truth' (1024^2) e.g., from fluid PDE simulations $\partial_t u + u \cdot \nabla u = -\nabla p$, div $u = 0$

(2) Coarse-scale avg PDE (64^2) e.g. space/time average velocity, u This approx introduces uncertainty.

(3) Coarser-scale simulation (4^2) e.g. Large Eddy Simulation (LES) LES introduces more uncertainty.

Imperial College l ondor

 QQ

 $\mathbf{A} \equiv \mathbf{A} \quad \mathbf{A} \equiv \mathbf{A}$

Now consider composition of *multiple maps* $g_1 \ldots g_N$

If the Lagrangian had relabelling symmetry for each successive map, then the action integral in Hamilton's principle would take the form, $¹$ </sup>

$$
S = \int_{t_1}^{t_2} L(g_1, \dot{g}_1, a_1^0; g_2, \dot{g}_2, a_2^0; g_3, \dot{g}_3, a_3^0; \dots; g_N, \dot{g}_N, a_N^0) dt
$$

\n
$$
S = \int_{t_1}^{t_2} L(\dot{g}_1 g_1^{-1}, a_1^0 g_1^{-1}; (\dot{g}_2 g_2^{-1}) g_1^{-1}, (a_2^0 g_2^{-1}) g_1^{-1};
$$

\n
$$
(\dot{g}_3 g_3^{-1}) g_2^{-1} g_1^{-1}, (a_3^0 g_3^{-1}) g_2^{-1} g_1^{-1}; \dots dt
$$

\n
$$
S_{red} =: \int_{t_1}^{t_2} \ell(u_1, a_1; u_2 g_1^{-1}, a_2 g_1^{-1}; u_3 g_2^{-1} g_1^{-1}, a_3 g_2^{-1} g_1^{-1}; \dots) dt
$$

\n
$$
=: \int_{t_1}^{t_2} \ell(u_1, a_1; g_1, u_2, g_1, a_2; (g_1 g_2), u_3, (g_1 g_2), a_3; \dots) dt
$$

We restrict to the case that $(u_{k}:=\dot{g}_{k}g_{k}^{-1})$ $a_k^{-1}, a_k := a_1^0 g_k^{-1}$ $(k-1, 2, 3, 4)$, for $k = 1, 2, 3$. Colour coded as $k = 1$, $k = 2$, $k = 3$. **Imperial College** n_n

 1 Colours [d](#page-0-0)enote spatial domains[.](#page-0-0) E.g., $u_3(x_1,x_2,x_3,t)$ $u_3(x_1,x_2,x_3,t)$ $u_3(x_1,x_2,x_3,t)$ $u_3(x_1,x_2,x_3,t)$ $u_3(x_1,x_2,x_3,t)$ $u_3(x_1,x_2,x_3,t)$ $u_3(x_1,x_2,x_3,t)$ [an](#page-12-0)d dV dV \equiv $dx_1^3dx_2^3dx_3^3$ $dx_1^3dx_2^3dx_3^3$. OQ Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 14/26

Euler-Poincaré variational relations for C∘M dynamics

Variational relations for nested degrees of freedom exist,

because of a Lie chain rule (LCR) . E.g., in varying *advected quantities*,

$$
\delta a_k(t) =: a'_k(t) := \partial_{\epsilon} a_k(t, \epsilon) \Big|_{\epsilon=0} :=: (g_{k*}(t) a_k^0)'
$$

By LCR =: $-\mathcal{L}_{g'_k g_k^{-1}(t)} a_k(t) = -\mathcal{L}_{w_k(t)} a_k(t), \qquad w_k := g'_k g_k^{-1}(t)$

Euler-Poincaré variational relations for velocities $u_k := g_k g_k^{-1} =: g_{k*} g_k$ are obtained from equality of cross derivatives $\dot{g}_k' = g_k'$ and LCR. Namely,

$$
u'_1 - (\partial_t - ad_{u_1})w_1 = 0,
$$

\n
$$
g_{1*}(u'_2 - (\partial_t - ad_{u_1})w_2 + \mathcal{L}_{w_1}u_2) = 0,
$$

\n
$$
(g_1g_2)_*(u'_3 - (\partial_t - ad_{u_1+u_2})w_3 + \mathcal{L}_{w_1+w_2}u_3) = 0.
$$

- The further sequence of EP variational relations follows a clear pattern.
- Larger scales sweep smaller ones by C∘M push-forward $(g_1g_2)_*$. Imperial College

 Ω

Hamilton's variational principle $\delta S_{red} = 0$ for multiple C \circ M

Hamilton's principle for C∘M velocity variations $u_1', u_2',$ and u_3' yields

$$
0 = \delta S_{red} = \int_{t_1}^{t_2} \left\langle \frac{\delta \ell}{\delta u_1}, (\partial_t - ad_{u_1}) w_1 \right\rangle_{L^2}
$$

+ $\left\langle \frac{\delta \ell}{\delta u_2}, (\partial_t - ad_{u_1}) w_2 + \mathcal{L}_{w_1} u_2 \right\rangle_{L^2}$
+ $\left\langle \frac{\delta \ell}{\delta u_3}, (\partial_t - ad_{u_1 + u_2}) w_3 + \mathcal{L}_{w_1 + w_2} u_3 \right\rangle_{L^2}$
+ $\left\langle \frac{\delta \ell}{\delta a_1}, -\mathcal{L}_{w_1} a_1 \right\rangle_{L^2} + \left\langle \frac{\delta \ell}{\delta a_2}, -\mathcal{L}_{w_1 + w_2} a_2 \right\rangle_{L^2}$
+ $\left\langle \frac{\delta \ell}{\delta a_3}, -\mathcal{L}_{w_1 + w_2 + w_3} a_3 \right\rangle_{L^2} dt$

Three EP equations follow by collecting coefficients of w_1 , w_2 , and w_3 then setting each coefficient equal to zero. **Imperial College** ondor

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 16/26

 QQ

Three (colour-coded) Euler-Poincaré motion equations

EP equations for $k = 1, 2, 3$ emerge after *collecting coefficients* of w_1 , w_2 , w₃ with **diamond operation** (\diamond) defined by $\langle b \diamond a, w \rangle_{\mathfrak{X}} := \langle b, -\mathcal{L}_w a \rangle_V$. Averaging over successive scales [Holm-Tronci 2012] leads to

$$
0 = \delta S_{red} =
$$
\n
$$
- \int_{t_1}^{t_2} \left\langle (\partial_t + ad_{u_1}^*) \frac{\delta \ell}{\delta u_1} - \frac{\delta \ell}{\delta a_1} \diamond a_1, w_1 \right\rangle_{L^2}
$$
\n
$$
- \left\langle \frac{\frac{\delta \ell}{\delta u_2} \diamond u_2 + \frac{\frac{\delta \ell}{\delta u_2} \diamond a_2}{\frac{\delta \ell}{\delta u_2} \diamond a_2} + \frac{\frac{\delta \ell}{\delta u_3} \diamond u_3}{\frac{\delta \ell}{\delta u_3} \diamond u_3} + \frac{\frac{\delta \ell}{\delta u_3} \diamond a_3}{\frac{\delta \ell}{\delta u_3} \diamond a_3} \right\rangle_{L^2}
$$
\n
$$
+ \left\langle (\partial_t + ad_{u_1 + u_2}^*) \frac{\delta \ell}{\delta u_2} - \frac{\delta \ell}{\delta a_2} \diamond a_2 - \frac{\frac{\delta \ell}{\delta u_3} \diamond u_3}{\frac{\delta u_3}{\delta u_3} \diamond a_3} \right\rangle_{L^2}
$$
\n
$$
+ \left\langle (\partial_t + ad_{u_1 + u_2 + u_3}^*) \frac{\delta \ell}{\delta u_3} - \frac{\delta \ell}{\delta a_3} \diamond a_3, w_3 \right\rangle_{L^2}
$$

Auxiliary relations hold for the multiscale advected quantities:

$$
a_1 := g_{1*} a_1^0, \t a_2 := (g_1 g_2)_* a_2^0, \t a_3 := (g_1 g_2 g_3)_* a_3^0
$$

$$
\partial_t a_1 = -\mathcal{L}_{u_1} a_1, \t \partial_t a_2 = -\mathcal{L}_{(u_1+u_2)} a_2, \t \partial_t a_3 = -\mathcal{L}_{(u_1+u_2+u_3)} a_3.
$$
Imperial College
Darryl Holm: Imperial College
Ingolstadt lecture
Multiscale Fluid interactions
17/26

Legendre transform \implies nested Hamiltonian formulation

The Euler-Poincar´e equations may be displayed in Lie-Poisson matrix form with reduced Hamiltonian $h(m_k,a_k):\Pi_k(\mathfrak{X}_k^*\times V_k^*)\to\mathbb{R}$ with $m_k:=\frac{\delta\ell}{\delta u_k}.$

The matrix operator defines a Lie-Poisson bracket $\{f, h\} = \langle \mu, [df, dh] \rangle$ on the dual of the following nested semidirect product Lie algebra

 $\mathfrak{s}=\mathfrak{g}_{1}\circledS\Bigl(V_{1}\oplus\bigl(\mathfrak{g}_{2}\circledS\bigl(V_{2}\oplus\bigl(\mathfrak{g}_{3}\circledS\;V_{3}\bigr)\bigl)\Bigr).$

The pattern for further extension to additional DoF is clear. **Imperial College** It shows a sense of Lie algebraic self similarity. London

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 18/26

- (1) Back reaction (scatter) via feedback in Kelvin circulation theorems
- (2) Littlewood-Paley Fourier-shell decompositions of interacting fluid scales. Cf. Holm-Tronci [2012]
- (3) Geometric understanding of multiscale fluid interaction dynamics: Each successively smaller scale regards the previous larger scale as a Lagrange coordinate.
- (4) The theoretical results for back-reaction of small scales on large scales may guide stochastic models of effects of small scales on large scales.
- (5) A geometric stochastic approach for multiscale fluid modelling may be introduced via a multiscale Kelvin's circulation theorem.

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

Imperial College London

 QQ

Back reaction (scattering) in Kelvin circulation theorems

Deterministic back reaction (scattering) would require modelling the averages of 6 sub-grid scale fluctuating quantities in 2 Kelvin theorems.

$$
\frac{d}{dt} \oint_{c(u_1)} D_1^{-1} \frac{\delta \ell}{\delta u_1} = \oint_{c(u_1)} D_1^{-1} \left(\frac{\delta \ell}{\delta a_1} \diamond a_1 + \frac{\overline{\delta \ell}}{\delta u_2} \diamond u_2 + \frac{\overline{\delta \ell}}{\delta a_2} \diamond a_2 + \frac{\overline{\delta \ell}}{\delta u_3} \diamond u_3 + \frac{\overline{\delta \ell}}{\delta u_3} \diamond u_3 + \frac{\overline{\delta \ell}}{\delta a_3} \diamond a_3 \right),
$$
\n
$$
\frac{d}{dt} \oint_{c(u_1+u_2)} D_2^{-1} \frac{\delta \ell}{\delta u_2} = \oint_{c(u_1+u_2)} D_2^{-1} \left(\frac{\delta \ell}{\delta a_2} \diamond a_2 + \frac{\overline{\delta \ell}}{\delta u_3} \diamond u_3 + \frac{\overline{\delta \ell}}{\delta a_3} \diamond a_3 \right),
$$
\n
$$
\frac{d}{dt} \oint_{c(u_1+u_2+u_3)} D_3^{-1} \frac{\delta \ell}{\delta u_3} = \oint_{c(u_1+u_2+u_3)} D_3^{-1} \frac{\delta \ell}{\delta a_3} \diamond a_3.
$$

 $(\partial_t + \mathcal{L}_{u_1})D_1 = 0$, $(\partial_t + \mathcal{L}_{u_1+u_2})D_2 = 0$, $(\partial_t + \mathcal{L}_{u_1+u_2+u_3})D_3 = 0$. **Imperial College** Littlewood-Paley Fourier-shell averages preserve [th](#page-18-0)[e K](#page-20-0)[e](#page-18-0)[lv](#page-19-0)[in](#page-20-0) [t](#page-0-0)[he](#page-25-0)[or](#page-0-0)[em](#page-25-0)[.](#page-0-0) 2990

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 20/26

Littlewood-Paley Fourier avg preserves Kelvin's theorem

Figure: $k = 1$, $k = 2$, and $k = 3$ scales in Fourier space.

Imperial College Holm-Tronci [2012] provide details of L[P](#page-19-0) [flu](#page-21-0)[id](#page-19-0) [a](#page-20-0)[v](#page-21-0)[er](#page-0-0)[agi](#page-25-0)[ng](#page-0-0)[.](#page-25-0) London QQ Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 21/26

 (1) Fine-scale 'Truth' (1024^2) e.g., from fluid PDE simulations $\partial_t u + u \cdot \nabla u = -\nabla p$, div $u = 0$

(2) Coarse-scale SALT SPDE (64²) for stochastic 2D Euler velocity, u $\mathbf{d} u + \mathbf{d} x_t \cdot \nabla u + u_j \nabla \mathbf{d} x_t{}^j = - \nabla p \, dt$ $\mathbf{d}x_t = u_t(x_t)dt + \sum \xi_i(x_t) \circ dW_t^i$ Stochastic advection velocity, $\mathbf{d}x_t$ This step quantifies uncertainty.

(3) Particle filtering of data (4^2) $\mathbf{d}x_t = u_t(x_t)dt + \sum \xi_i(x_t) \circ dW_t^i$ $dy_t = a(x_t)dt + b(x_t) \circ dB_t$ This step reduces uncertainty_{imperial College}

Londor

Alternative: Stochastic geometric mechanics approach

One could model effects of smaller scales on larger scales by introducing SALT noise in Kelvin's circulation laws, specifically by taking the small-scale effects of $k = 2$ and $k = 3$ as stochastic processes,

$$
dx_k := u_k dt + \xi_k(x) \circ dW_t \quad \text{for} \quad k = 2, k = 3.
$$

Stochastic Advection by Lie Transport (SALT) in Kelvin's theorem is ²

$$
d\oint_{c(dx_1)} D_1^{-1} \frac{\delta \ell}{\delta u_1} = \oint_{c(dx_1)} D_1^{-1} \left(\frac{\delta \ell}{\delta a_1} \diamond a_1 + \zeta_2(x) \diamond dW_t + \zeta_3(x) \diamond dW_t \right),
$$

$$
d\oint_{c(dx_1+dx_2)} D_2^{-1} \frac{\delta \ell}{\delta u_2} = \oint_{c(dx_1+dx_2)} D_2^{-1} \left(\frac{\delta \ell}{\delta a_2} \diamond a_2 + \zeta_3(x) \diamond dW_t \right).
$$

and the volume elements D_1 , D_2 , D_3 are stochastically advected, as

$$
({\rm d} + \mathcal{L}_{\rm d}{}_{x_1})D_1 = 0\,, \quad ({\rm d} + \mathcal{L}_{\rm d}{}_{x_1+\rm d}{}_{x_2})D_2 = 0\,.
$$

 2 Fluctuations $\frac{\delta \ell}{\delta u_2} \circ u_2 =$ ad $\frac{u_2}{\delta u_3} \frac{\delta \ell}{\delta u_3} \circ u_3 =$ ad $\frac{u_3}{\delta u_3} \frac{\delta \ell}{\delta u_3}$ are modelled as stochastic forces. KOR E KERKERKERKO Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 24/26

What have we been discussing in this talk today?

- (i) Began by formulating GLM as the composition by push-forward of two smooth invertible maps in Hamilton's principle for Eulerian fluids.
- **■** Extended C∘M so that internal dynamics of several successive fluid components are transported by the combined actions of those that came before and they combine to transport all those that come after.
- The advantage of the considerations here is their generality. C◦M yields coordinate-free representations of multicomponent, multiphysics non-dissipative fluid dynamics common in oceanic flows.
- **■** The preservation of Kelvin's theorem in the C∘M geometric averaging and closure approach also provides a basis for stochastic modelling. Namely, it identifies what physical terms are modelled by stochasticity.
Interial College

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 25/26

医单侧 不重

What's next? Let's discuss!

<https://www.imperial.ac.uk/ocean-dynamics-synergy/>

Thanks for listening!

More papers along these lines with up-to-date references are at ORCID:

<https://orcid.org/0000-0001-6362-9912>

Darryl Holm Imperial College [Ingolstadt lecture](#page-0-0) Multiscale Fluid Interactions 26/26

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 ${ - - - \# - - - }$

Imperial College ondon

 QQ