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Pollock drifter trajectories Ocean

,

Figure: Magna-, Meso- and Submeso ocean drifter trajectories.

Darryl Holm Imperial College Ingolstadt lecture Multiscale Fluid Interactions 2 / 26



SWOT 1st Light 2023-03-24 Gulf Stream topography

Figure: SWOT 1st Light 2023-03-24 Gulf Stream topography.
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Multi-scale analysis is required for modern satellite data

Figure: SWOT will observe many different interacting fluid components.

Darryl Holm Imperial College Ingolstadt lecture Multiscale Fluid Interactions 4 / 26



Oceans have Magnascales, Mesoscales and Sub-mesoscales

Figure: Oceanic Magna-, Meso- and Submeso scales, cf. Dickey & Bidigare [2005]
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Atmosphere Length/Time scale models (Klein ARFM2010)

Figure: Magna-, Meso- and Submeso atmospheric phenomena.
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Multiscale analysis involves multiple levels of description

(1) Fine-scale ‘Truth’ (10242)
e.g., from fluid PDE simulations
∂tu + u · ∇u = −∇p, divu = 0.

(2) Coarse-scale avg PDE (642)
e.g. space/time average velocity,

u(x , x , t) := u(x , x , x , t)
This approx introduces uncertainty
of closure problems u · ∇u(x , x , t).

(3) Coarser-scale simulation (42)
e.g. Large Eddy Simulation (LES)
LES introduces more uncertainty
due to closure problems.
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C◦M has some advantages for multiscale fluid interactions

Why? Satellite data observes effects of multiscale fluid interactions.
Regarding multiscale fluid interactions as C◦M is natural, because for
smaller scale motions the larger ones are Lagrangian reference frames.

How? Euler-Poincaré variational principles for C◦M provide
multicomponent, multiphysics, multiscale, Hamiltonian fluid models.
An advantage is that they are very general and coordinate free.
A disadvantage is that they require averaging over the smaller scales.

What? Multiscale C◦M models can be applied either by representing
expected phenomena, or by projection onto orthonormal modes.
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Why? How? What? and What Next? Details for C◦M

(i) Why C◦M?
C◦M fluid dynamics describes nested interactions of multiple DoF.
The nested physics has a self-similar Lie algebraic structure

s = g1 s
(
V1 ⊕

(
g2 s (V2 ⊕ (g3 s V3)

) )
.

The nested pattern reveals how to make further extensions of DOF.

(ii) How does C◦M work, mathematically?
Larger scales sweep smaller ones by push-forward of C◦M (g1g2)∗.

(iii) What results arise from the C◦M approach?
C◦M variational principle yields coordinate-free space-time averaged
models that possess a physically sensible Kelvin circulation theorem.

(iv) What next for C◦M?
Still in progress! Disadvantage: averaging limits applicability.
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GLM defines fluid velocity at displaced oscillating position

Recall that GLM defines the fluid velocity as uξ(x, t) := u(x + ξ(x, t, t/ε), t) at the
displaced oscillating position xt + ξ(xt , t, t/ε) where xt is evaluated at the current
position x on a Lagrangian mean path

xo

ξx =g(t).xo

x g~ .(t) xoxo=

ξ= ξx x−

uξ :=
DLxξ

Dt
:=

DL

Dt

(
x + ξ(x, t, t/ε)

)
= uL(x, t) + u`(x, t, t/ε)

with
DL

Dt
=

∂

∂t
+ uL · ∂

∂x
and u` :=

DLξ

Dt
.

GLM then defines the Lagrangian mean velocity as uξ(x, t) = uL(x, t) = ˙̃g(t)g̃(t)−1x,

where ( · ) is a time, or phase average at fixed Eulerian coordinate x.
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GLM arises from the tangent of composition of two maps

Xt = gtx0 = (Id + αΞt) ◦ ḡtx0 =: xt + αξ(xt , t) ,

xo

ξx =g(t).xo

x g~ .(t) xoxo=

ξ= ξx x−
g~g

g 1-
1-1-~g

x xx0

Mean CurrentReference

Ut(Xt , t) :=
dXt

dt
= ġtg

−1
t Xt =

dxt
dt

+ α
(
∂tξ(xt , t) +

∂ξ

∂x jt

dx jt
dt

)
= ˙̄gt ḡ

−1
t xt + α

(
∂tξ(xt , t) +

∂ξ

∂x jt
· ( ˙̄gt ḡ

−1
t x jt )

)
=: uL(xt , t) + α

d

dt
ξ(xt , t) Recovers GLM velocity.
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Example: C◦M result for wave-current interaction

In Lie-Poisson bracket form, the wave-current equations studied lately is

∂

∂t


m
D
ρ
J
N

 = −


ad∗ m 2 � D 2 � ρ 2 � J 2 � N
L D 0 0 0 0

L ρ 0 0 0 0

ad∗ J 0 0 ad∗ J 2 � N
L N 0 0 L N 0



δH/δm
δH/δD
δH/δρ
δH/δJ
δH/δN

 ,

Fluid variables are: momentum m = Dρu, with Eulerian velocity u, scalar
mass density ρ and volume form D.

Wave variables are canonically conjugate, (φ,N) by J := N∇φ.

The Lie-Poisson bracket for wave-current dynamics is dual to Lie algebra,

s = g1 s
(
V1 ⊕

(
g2 s V2

))
.

Hence, the Lie-Poisson bracket {F ,H} satisfies the Jacobi identity.
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Keep this figure in mind

(1) Fine-scale ‘Truth’ (10242)
e.g., from fluid PDE simulations
∂tu + u · ∇u = −∇p, divu = 0

(2) Coarse-scale avg PDE (642)
e.g. space/time average velocity, u
This approx introduces uncertainty.

(3) Coarser-scale simulation (42)
e.g. Large Eddy Simulation (LES)
LES introduces more uncertainty.
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Now consider composition of multiple maps g1 . . . gN

If the Lagrangian had relabelling symmetry for each successive map, then
the action integral in Hamilton’s principle would take the form,1

S =

ˆ t2

t1

L(g1, ġ1, a
0
1; g2, ġ2, a

0
2; g3, ġ3, a

0
3; . . . ; gN , ġN , a

0
N) dt

S =

ˆ t2

t1

L(ġ1g
−1
1 , a01g

−1
1 ; (ġ2g

−1
2 )g−11 , (a02g

−1
2 )g−11 ;

(ġ3g
−1
3 )g−12 g−11 , (a03g

−1
3 )g−12 g−11 ; . . . dt

Sred =:

ˆ t2

t1

`(u1, a1; u2g
−1
1 , a2g

−1
1 ; u3g

−1
2 g−11 , a3g

−1
2 g−11 ; . . . ) dt

=:

ˆ t2

t1

`(u1, a1; g1∗u2, g1∗a2; (g1g2)∗u3, (g1g2)∗a3; . . . ) dt

We restrict to the case that (uk := ġkg
−1
k , ak := a01g

−1
k ), for k = 1, 2, 3.

Colour coded as k = 1, k = 2, k = 3.
1Colours denote spatial domains. E.g., u3(x1, x2, x3, t) and dV = dx3

1dx
3
2dx

3
3 .
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Euler-Poincaré variational relations for C◦M dynamics

Variational relations for nested degrees of freedom exist,
because of a Lie chain rule (LCR). E.g., in varying advected quantities,

δak (t) =: a′k (t) := ∂εak (t, ε)
∣∣
ε=0

:=: (gk∗(t)a0k)′

By LCR =: −Lg ′kg−1
k (t)ak (t) = −Lwk(t)ak (t) , wk := g ′kg

−1
k (t)

Euler-Poincaré variational relations for velocities uk := ġkg
−1
k =: gk∗ġk

are obtained from equality of cross derivatives ġ ′k = g ′k ˙ and LCR.
Namely,

u′1 − (∂t − adu1)w1 = 0,

g1∗
(
u′2 − (∂t − adu1)w2 + Lw1u2

)
= 0,

(g1g2)∗
(
u′3 − (∂t − adu1+u2)w3 + Lw1+w2u3

)
= 0.

• The further sequence of EP variational relations follows a clear pattern.

• Larger scales sweep smaller ones by C◦M push-forward (g1g2)∗.
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Hamilton’s variational principle δSred = 0 for multiple C◦M

Hamilton’s principle for C◦M velocity variations u′1, u′2, and u′3 yields

0 = δSred =

ˆ t2

t1

〈
δ`

δu1
, (∂t − adu1)w1

〉
L2

+

〈
δ`

δu2
, (∂t − adu1)w2 + Lw1u2

〉
L2

+

〈
δ`

δu3
, (∂t − adu1+u2)w3 + Lw1+w2u3

〉
L2

+

〈
δ`

δa1
, −Lw1a1

〉
L2

+

〈
δ`

δa2
, −Lw1+w2a2

〉
L2

+

〈
δ`

δa3
, −Lw1+w2+w3a3

〉
L2
dt

Three EP equations follow by collecting coefficients of w1, w2, and w3

then setting each coefficient equal to zero.
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Three (colour-coded) Euler-Poincaré motion equations

EP equations for k = 1, 2, 3 emerge after collecting coefficients of w1, w2,
w3 with diamond operation (�) defined by

〈
b � a , w

〉
X

:=
〈
b , −Lwa

〉
V

.
Averaging over successive scales [Holm-Tronci 2012] leads to

0 = δSred =

−
ˆ t2

t1

〈
(∂t + ad∗u1)

δ`

δu1
− δ`

δa1
� a1 , w1

〉
L2

−
〈

δ`
δu2
� u2 + δ`

δa2
� a2 + δ`

δu3
� u3 + δ`

δa3
� a3 , w1

〉
L2

+

〈
(∂t + ad∗u1+u2)

δ`

δu2
− δ`

δa2
� a2 − δ`

δu3
� u3 − δ`

δa3
� a3 , w2

〉
L2

+

〈(
∂t + ad∗u1+u2+u3

) δ`
δu3
− δ`

δa3
� a3 , w3

〉
L2
dt

Auxiliary relations hold for the multiscale advected quantities:

a1 := g1∗a
0
1, a2 := (g1g2)∗a

0
2, a3 := (g1g2g3)∗a

0
3

∂ta1 = −Lu1a1, ∂ta2 = −L(u1+u2)a2, ∂ta3 = −L(u1+u2+u3)a3.
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Legendre transform =⇒ nested Hamiltonian formulation

The Euler-Poincaré equations may be displayed in Lie-Poisson matrix form
with reduced Hamiltonian h(mk , ak) : Πk(X∗k × V ∗k )→ R with mk := δ`

δuk
.

∂t


m1

a1
m2

a2
m3

a3

 = −



ad∗2 m1 2 � a1 �m2 � a2 �m3 � a3
L a1 0 0 0 0 0

L m2 0 ad∗ m2 2 � a2 �m3 � a3
L a2 0 L a2 0 0 0

L m3 0 L m3 0 ad∗ m3 2 � a3

L a3 0 L a3 0 L a3 0





δh
δm1

= u1
δh
δa1

= − δ`
δa1

δh
δm2

= u2
δh
δa2

= − δ`
δa2

δh
δm3

= u3
δh
δa3

= − δ`
δa3


.

The matrix operator defines a Lie-Poisson bracket {f , h} = 〈µ, [df , dh]〉
on the dual of the following nested semidirect product Lie algebra

s = g1 s
(
V1 ⊕

(
g2 s (V2 ⊕ (g3 s V3)

) )
.

The pattern for further extension to additional DoF is clear.
It shows a sense of Lie algebraic self similarity.
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What’s next? Let’s discuss!

(1) Back reaction (scatter) via feedback in Kelvin circulation theorems

(2) Littlewood-Paley Fourier-shell decompositions of interacting fluid
scales. Cf. Holm-Tronci [2012]

(3) Geometric understanding of multiscale fluid interaction dynamics:
Each successively smaller scale regards the previous larger scale as a
Lagrange coordinate.

(4) The theoretical results for back-reaction of small scales on large scales
may guide stochastic models of effects of small scales on large scales.

(5) A geometric stochastic approach for multiscale fluid modelling may be
introduced via a multiscale Kelvin’s circulation theorem.
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Back reaction (scattering) in Kelvin circulation theorems

Deterministic back reaction (scattering) would require modelling the
averages of 6 sub-grid scale fluctuating quantities in 2 Kelvin theorems.

d

dt

˛
c(u1)

D−11

δ`

δu1
=

˛
c(u1)

D−11

(
δ`

δa1
� a1 + δ`

δu2
� u2 + δ`

δa2
� a2

+ δ`
δu3
� u3 + δ`

δa3
� a3

)
,

d

dt

˛
c(u1+u2)

D−12

δ`

δu2
=

˛
c(u1+u2)

D−12

(
δ`

δa2
� a2 + δ`

δu3
� u3 + δ`

δa3
� a3

)
,

d

dt

˛
c(u1+u2+u3)

D−13

δ`

δu3
=

˛
c(u1+u2+u3)

D−13

δ`

δa3
� a3 .

(∂t + Lu1)D1 = 0 , (∂t + Lu1+u2)D2 = 0 , (∂t + Lu1+u2+u3)D3 = 0 .

Littlewood-Paley Fourier-shell averages preserve the Kelvin theorem.
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Littlewood-Paley Fourier avg preserves Kelvin’s theorem

Figure: k = 1, k = 2, and k = 3 scales in Fourier space.

Holm-Tronci [2012] provide details of LP fluid averaging.
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The SALT procedure also involves 3 levels of description

(1) Fine-scale ‘Truth’ (10242)
e.g., from fluid PDE simulations
∂tu + u · ∇u = −∇p, divu = 0

(2) Coarse-scale SALT SPDE (642)
for stochastic 2D Euler velocity, u
du + dxt · ∇u + uj∇dxt

j = −∇p dt
dxt = ut(xt)dt +

∑
ξi (xt) ◦ dW i

t

Stochastic advection velocity, dxt
This step quantifies uncertainty.

(3) Particle filtering of data (42)
dxt = ut(xt)dt +

∑
ξi (xt) ◦ dW i

t

dyt = a(xt)dt + b(xt) ◦ dBt

This step reduces uncertainty.
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Pollock drifter trajectories Ocean

,

Figure: Magna-, Meso- and Submeso ocean drifter trajectories.
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Alternative: Stochastic geometric mechanics approach

One could model effects of smaller scales on larger scales by introducing
SALT noise in Kelvin’s circulation laws, specifically by taking the
small-scale effects of k = 2 and k = 3 as stochastic processes,

dxk := ukdt + ξk(x) ◦ dWt for k = 2, k = 3 .

Stochastic Advection by Lie Transport (SALT) in Kelvin’s theorem is 2

d

˛
c(dx1)

D−11

δ`

δu1
=

˛
c(dx1)

D−11

(
δ`

δa1
� a1 + ζ2(x) ◦ dWt + ζ3(x) ◦ dWt

)
,

d

˛
c(dx1+dx2)

D−12

δ`

δu2
=

˛
c(dx1+dx2)

D−12

(
δ`

δa2
� a2 + ζ3(x) ◦ dWt

)
.

and the volume elements D1, D2, D3 are stochastically advected, as

(d + Ldx1)D1 = 0 , (d + Ldx1+dx2)D2 = 0 .

2Fluctuations δ`
δu2
�u2=ad∗u2

δ`
δu2

& δ`
δu3
�u3=ad∗u3

δ`
δu3

are modelled as stochastic forces.
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What have we been discussing in this talk today?

(i) Began by formulating GLM as the composition by push-forward of two
smooth invertible maps in Hamilton’s principle for Eulerian fluids.

(ii) Extended C◦M so that internal dynamics of several successive fluid
components are transported by the combined actions of those that
came before and they combine to transport all those that come after.

(iii) The advantage of the considerations here is their generality.
C◦M yields coordinate-free representations of multicomponent,
multiphysics non-dissipative fluid dynamics common in oceanic flows.

(iv) The preservation of Kelvin’s theorem in the C◦M geometric averaging
and closure approach also provides a basis for stochastic modelling.
Namely, it identifies what physical terms are modelled by stochasticity.
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What’s next? Let’s discuss!

https://www.imperial.ac.uk/ocean-dynamics-synergy/

Thanks for listening!
More papers along these lines with up-to-date references are at ORCID:

https://orcid.org/0000-0001-6362-9912

{− −− #−−−}
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