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Main issues
• The solid earth stays put to be observed, the  atmosphere, the 

oceans, & many other things, do not.
• Two types of information:

- direct ® observations, and
- indirect ® dynamics (from past observations) <= ML!

both have errors.
• Combine the two in (an) optimal way(s)
• Advanced data assimilation methods provide such ways:

- sequential estimation ® the Kalman filter(s), and
- control theory ® the adjoint method(s)

• The two types of methods are essentially equivalent for simple 
linear systems (the duality principle)



Main issues (continued) 
• Their performance differs for large nonlinear systems in:

- accuracy, and
- computational efficiency

• Study optimal combination(s) of, as well as improvements 
over, currently operational methods (4-D Var, EnKF). 
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Atmospheric data 

Total no. of observations = 0(105) 
scalars per 12h–24h "

  0(102 ) observations/[(significant "
!d-o-f) x (significant Δt)]"

Nowadays 0(107) obs. & more d-o-f 
of interest, too!"

Drifting 
buoys: Ps – 
267  

Cloud-drift: V 
– 2x2259

Aircraft:  V – 
2x1100 

Ship & land 
surface: Ps, Ts , 
Vs – 4x3446 

Polar orbiting 
satellites: T – 
5x2048

Balloons : V – 
2x581x10 

Radiosondes : T, V - 
3x749x10 

Bengtsson, Ghil & Källén (eds.): "
Dynamic Meteorology, !
Data Assimilation Methods (1981)!



Ocean data – past  

Total no. of !
(oceanographic observations)/!
(meteorological observations) !
      = O(10–4) for the past; &!
! = O(10–1) for the future :!

Syd Levitus (1982). !



Ocean data – present & future  
Altimetry ⇒ sea level; scatterometry ⇒ surface winds & sea state;!
acoustic tomography ⇒ temperature & density; etc. !

Courtesy of Tong (“Tony”) Lee, JPL!
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Ocean data – past, present & future 

Total no. of oceanographic 
observations/met. ob’sns
= O(10–4) for the past; &
= O(10–1) for the future :

Syd Levitus (1982). 

Ø 3-D ocean obs. are still not really 
there: ocean tomography didn't 
work out but drifters are doing a 
better & better job.

Ø Two forms of DA for the coupled 
system:
– weak coupling: models 

coupled, DA not;
– strong coupling: both coupled; 

could work.
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Evolution of DA

Transition from “early” to “mature” 
phase of DA in NWP:!
– no Kalman filter (Ghil et al., 1981

(*))!
– no adjoint (Lewis & Derber,

Tellus, 1985;
Le Dimet & Talagrand*Tellus, 
1986)!

(*) Bengtsson, Ghil & Källén (Eds., 1981), 
Dynamic Meteorology: !
!Data Assimilation Methods.!

M. Ghil & P. M.-Rizzoli (Adv. Geophys.,
1991).!



Basic ideas of data assimilation 
and sequential estimation - I 

Simple illustration


We want to estimate!
      T – the temperature of this room, based on the readings !
      T1 and T2 of two thermometers,!

!  by a linear estimate!

!The interpretation will be: !
! !T1  = Tf   -  first guess (of numerical forecast model) !
! !T2  = To - observation (R/S, satellite, etc.)!
!        = Ta

  - objective analysis !!

T̂ = α1T1 + α2T2

T̂



Basic ideas of data assimilation 
and sequential estimation - II

    If the observations T1 and T2 are unbiased, and we want     to be unbiased, !
    then  α1 + α2 = 1,  !

    so one can write !
! ! ! ! ! ! ! !updating (sequential).!

    If T1 and  T2  are uncorrelated, and have known standard deviations,  !

! A1 = σ1
–2,   A2 = σ2

–2,!

 then the minimum variance estimator(*) is !

 and its accuracy is !
! !Â  = ( A1 + A2) ≥ max {A1, A2}.!

(*) BLUE = Best Linear Unbiased Estimator!

T̂

T̂ = T1 + α2(T2 − T1) :

T̂ = T1 +
A2

A1 +A2
(T2 − T1),



Forecast

Assimilation



b) {“first guess”} - {FGGE
analysis}

Halem, Kalnay, Baker & Atlas !

(Bull. Amer. Meteorol. Soc., 1982)

φ300

{6h fcst} – {conventional (NoSat)}!Advection of 
information 

φ300
Upper panel (NoSat):!
Errors advected !
off the ocean

Lower panel (Sat):!
Errors drastically reduced,!
as info. now comes in,!
off the ocean!



The main products of estimation(*)
• Filtering (F) – “video loops”
• Smoothing (S) – full-length feature “movies”
• Prediction (Pr) – NWP, ENSO
• Parameter estimates (Pe) – all of the above + DADA (**)

Distribute all of this over the Web 
to scientists, and to the
“person in the street”(or on the 
information superhighway).

In a general way:  Have fun (†)

(*) F + S + P: N. Wiener (1949, MIT Press); Pe – a lot recently
(**) DA for Detection & Attribution; (†) or, these days, use machine learning (ML)
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A little history – I



A little history – II

“If it should prove to be possible to obtain the large-scale wind field from temperatures 
alone, the time-table for the implementation of GARP might be substantially advanced.” 



Stabilization of the forecast–assimilation (FA) system – I 

Assimilation experiment with the !
40-variable Lorenz (1996) model!
Spectrum of Lyapunov exponents:!
Red: free system!
Dark blue: AUS with 3-hr updates!
Purple: AUS with 2-hr updates!
Light blue: AUS with 1-hr updates

Carrassi, Ghil, Trevisan & Uboldi
(Chaos, 2008)

michaelghil
Sticky Note
Add 1-2 slides on DC + MG



DA as a random dynamical systems (RDS) problem
Ø Recall the forecast–assimilation (FA) steps of sequential estimation: in continuous time, & sloppy 

notation, one can write

Ø Clearly Kz is a forcing by the observations z, with some weights K, optimal (“Kalman”) or not –
nudging, variational or what not.

Ø The mathematical framework of “open” dynamical systems is appropriate
– skew-product flows (G. Sell)
– pullback (Crauel & Flandoli, L. Arnold) or snapshot (C. Grebogi & E. Ott) attractors

References
H. Crauel and F. Flandoli. Attractors for random dynamical systems. Probab. Theory

Related Fields, 100(3):365–393, 1994.
F. J. Romeiras, C. Grebogi, and E. Ott, Multifractal properties of snapshot attractors

of random maps, Phys. Rev. A, 41:784–799, 1990.
G. R. Sell. Non-autonomous differential equations and dynamical systems. Trans. Amer.

Math. Soc., 127:241–283, 1967.
L.-S. Young, What are SRB measures, and which dynamical systems have them?

J. Stat. Phys., 108, 733–754, 2002.



The sources of nonautonomous dynamics

Physically open vs. closed systems: fluxes of mass, momentum & energy between the system 
& its surroundings are present or not.

The mathematical framework of nonautonomous dynamical systems (NDSs) is appropriate 
for physically open ones, in which the fluxes depend explicitly on time:
− skew-product flows (G. Sell)

ẋ = f (x, q), q̇ = g(q), x ∈ Rd, q ∈ Rn, with q the driving force for x.
− pullback (Flandoli, L. Arnold) or snapshot (C. Grebogi & E. Ott) attractors

dXt = f (X, q)dt + σ(X)dWt,
where Wt is a Brownian motion in Rd and dt ∼ (dW)2.

More generally, studying explicit time dependence in forcing or coefficients requires NDSs.

The term nonautonomous is used both for the deterministic case and for a unified perspective
on the deterministic & the random case.

The commonality between the two cases is (i) the independence & (ii) the semi-group
property of the driving force, whether q(t) or Wt.

Likewise, pullback attractor (PBA) is used both for the deterministic & the random case,
while in the latter case uses more specifically the phrase random attractor (RA).

Michael Ghil (ENS & UCLA) RDS for DA 11 February 2022 2 / 4



Time-dependent forcing, I 
u Much of the theoretical work on the intrinsic variability of the wind-driven 

ocean circulation has been done with time-independent wind stress. 
u  To address truly coupled ocean–atmosphere behavior and climate change
     an important step is to examine time-dependent wind stress.
u  The proper framework for doing so is the theory of non-autonomous and 

random dynamical systems (NDS and RDS).
u We do so here with a “toy” model given by the low-order truncation of the 
     QG, equivalent-barotropic potential vorticity equation (PVE).
u  The forcing is deterministic, aperiodic, and dominated by multi-decadal 

variability.
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Formally, the indexed family A of all pullback attracting sets At is termed the pullback attractor
(PBA) of the NDS, if the following two conditions are fulfilled:

(i) each snapshot At is compact and the family A = {A(t)}t∈R is invariant with respect to
the dynamics

X(t, s; X0) ∈ At ∀s ≤ t and X0 ∈ As; and (1)

(ii) the pullback attraction occurs for all times:

lim
s→−∞

|X(t, s; X0)−At| → 0 ∀t. (2)

Figure: Schematic diagram of an RA A (ω). From Ghil, Chekroun & Simonnet (2008).
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Stabilization of the forecast–assimilation (FA) system – II

The rigorous proof of the FA process stabilizing the unstable, chaotic dynamics of planetary
flows — based on the above ideas, along with other methods from stochastic calculus and
nonlinear filtering — is given by Theorems I and II below:

Theorem I (nonlinear). If the coefficients f , h and σ and the measures π0 and µ ∈ P2(R
d)

satisfy suitable conditions, then there exists R = R (π0, µ) such that

sup
t≥0

E[W2(π
µ
t , πt)] ≤ R.

Theorem II (linear). If the coefficients f , h and σ and the measures π0 and µ ∈ P2(R
d)

satisfy suitable conditions, then we have that

lim
t→∞

W2(π
µ
t , πt) = 0.

Here, the Wasserstein distance is defined by

W2(µ, ν) =
(

inf E
[
|X − Y|2

])1/2
, (3)

where E[Z] denotes the expected value of Z and the infimum is taken over all joint distribu-
tions of the random variables X and Y with marginals µ and ν, respectively.

D. Crisan and M. Ghil, 2022: Asymptotic behavior of the forecast–assimilation process with
unstable dynamics, Chaos 33(2), doi:10.1063/5.0105590.
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Use of Machine Learning (ML) in DA

The applications of ML to DA have proliferated in recent years:

For model error correction (Farchi et al., 2021).

As the forecast model itself (Chattopadhyay et al., 2021).
Can be implemented as an online process, where DA is used to provide
better training data for ML, and ML is used to forecast (Brajard et al., 2020).

To emulate unresolved scales (Brajard et al., 2021).

For learning the assimilation process directly (McCabe and Brown, 2021).

In forecasting, due to the high dimensionality of the atmosphere and its models,
hybrid methods that combine ML forecasts with physical models are necessary
(Pathak et al., 2018).
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Multi-model data assimilation (MM-DA) – I

Can we optimally combine ML, physical models, and observations for state
estimation?

Idea: use multi-model DA.

→
2 / 4



Multi-model data assimilation (MM-DA) – II

Consider a generalization of the Kalman filter cost function: from

(x − xf)T (Pf)−1(x − xf) + (Hx − y)TR−1(Hx − y), (1)

to
M∑

m=1

(Gmx − xf
m)T (Pf

m)−1(Gmx − xf
m) + (Hx − y)TR−1(Hx − y), (2)

where each model m has its own forecast state xf
m with forecast error covariance

matrix Pf
m and operator Gm.

MM-DA is also a generalization of the Bayesian formulation of the KF and is the
best linear unbiased estimator.

In Bach and Ghil (2022), we develop a multi-model EnKF and show that
it can outperform a multi-model ensemble,
as well as the best model in the ensemble.

Future: test as a hybrid DA and forecasting method with physical and ML models.

Eviatar Bach and Michael Ghil. A multi-model ensemble Kalman filter for data
assimilation and forecasting. arXiv:2202.02272 [physics, stat], February 2022.
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Space physics data  

Space platforms in Earth’s magnetosphere!

Two decades ago … 

… and now 



Detection & Attribution (D&A) 

Natural +   
anthropogenic !

 forcing!

Temperature, !
precipitation, …!
Trends + events!

Evidence of !
causal links?!

Observed 
forcing!

Observed !
system behavior!
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Computational advances

a) Hardware
– more computing power (CPU throughput)
– larger & faster memory (3-tier)

b) Software
– better numerical implementations of algorithms
– automatic adjoints
– block-banded, reduced-rank & other sparse-matrix algorithms
– better ensemble & particle filters, including localization
– efficient parallelization, ….

How much DA vs. forecast? 
- Design integrated observing–forecast–assimilation systems!



Observing system design
Ø Need no more (independent) observations than d-o-f to be tracked:

- “features” (Ide & Ghil, 1997a, b, DAO);
- instabilities (Todling & Ghil, 1994 + Ghil & Todling, 1996, MWR);
- trade-off between mass & velocity field (Jiang & Ghil, JPO, 1993); 
- AUS (Trevisan & colleagues) + rigorous math results (Crisan & Ghil).

Ø The cost of advanced DA is much less than that of instruments &
platforms: 

- at best use DA instead of instruments & platforms.  
- at worst use DA to determine which instruments & platforms 

(advanced OSSE)

Ø Use any observations, if forward modeling is possible (observing operator H)
- satellite images, 4-D observations => ML;
- pattern recognition in observations and in phase-space statistics => ML. 



Conclusions 
•  Theoretical concepts can play a useful role in devising !
    !better practical algorithms, and vice-versa.!

•  Trade-off between cost of observations !
!and of data  assimilation. 

•  Assimilation of ocean data in the coupled O–A system !
!is useful.  

•  They help estimate both ocean and coupling parameters.!

•  Judicious choices of observations and method can  !
  !stabilize the forecast-assimilation cycle. !

•  Changes in estimated parameters compensate for !

!model imperfections. 



The DA Maturity Index of a Field!

! !        (Satellite) images  (weather) forecasts, climate “movies” … 

•  The theoretician: Science is truth, donʼt bother me with the facts! 
•  The observer/experimentalist: Donʼt ruin my beautiful data with  "
   your lousy model!! 

•  Pre-DA: few data, poor models"

•  Early DA: ""
•  Better data, so-so models."
•  Stick it (the obsʼns) in – direct insertion, nudging."

•  Advanced DA: ""
•  Plenty of data, fine models."
•  E(n)KF, 4-D Var (2nd duality); UKF, particle filters, etc."

•  Post-industrial DA:!



Concluding remarks
We’ve come a long way in 60 years — some advances are laborious and 
incremental (e.g., sequential vs. control-theoretical methods), but others 
are fresh and exciting.

The latter include new areas of application 
– biology, geomagnetism, paleoclimate, space physics, …, DADA

as well as novel methodological challenges
– multi-scale and multi-model problems (MM-DA)
– various forms of machine learning,
– inverse problems for evolution equations, 

including climate simulation & sensitivity studies,
& uncertainty quantification (UQ)

Technological advances both pose new problems (massive data sets, higher 
resolution, …) and help solve them.

Overall, it’s a brave new world, in which data and models actively speak to each 
other, and we do so to both: enjoy!
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A little history – III
Charney et al., JAS, 1969: “If it [were] possible to obtain the large-scale wind field from temperatures 

alone, the time-table for the implementation of GARP might be substantially advanced.” 

Ghil et al., MWR, 1979: “Satellite-sounding data, though promising, provide only one of 
the basic variables, viz., temperature. Moreover, while the conventional data sets are 
available simultaneously over the entire globe, temperature sounding data are obtained 
only in asynoptic, time-continuous fashion. In one of the earliest efforts at using remote-
sounding temperatures for NWP, Charney et al. (1969) put forward the conjecture that a 
complete knowledge of the continuous temperature history of the atmosphere will 
determine other initial state variables, in particular the winds. 
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A little history – IV
Charney et al., JAS, 1969: “If it [where] possible to obtain the large-scale wind field from temperatures 

alone, the time-table for the implementation of GARP might be substantially advanced.” 

In a rotating Cartesian (x,y)-coordinate system the linearized shallow-water equations (SWEs) are

ut + �x � fv = 0,

vt + �y + fu = 0,

�t + �(ux + vy) = 0,
<latexit sha1_base64="WEbO1EO3uhW02csRkdEvOtjslJ8="></latexit>

with (u,v) the velocity, φ the geopotential, and f the Coriolis parameter. In this model, knowing the 
history of the mass field means knowing�(x, y, t) and hence (�t,�tt) at any given instant.

Differentiating the three equations above w.r.t. x, y and t, respectively, and substituting the mixed 
derivatives uxt and vyt from the first two into the third one, yields:

<latexit sha1_base64="kwt58QhiR+zOemhd+NErR6X2LnE="></latexit>

�f(vx � uy)� �(�xx + �yy) + �tt = 0.
<latexit sha1_base64="M9/xM5zf8VUXPhS4E027IyDg+Ns="></latexit>

This equation, together with the continuity equation above, leads to the Cauchy-Riemann system 
for the velocity components below:  

ux + vy = ��t/�,

uy � vx = �f�1(��� �tt/�),
<latexit sha1_base64="KBbHMdtIzV9g7/ONMQDlk7F/ROw="></latexit>

where Δ is the Laplacian. Similar diagnostic relations for the velocities were obtained for nonlinear 
SWEs and baroclinic models. E. Titi & colleagues obtained recently rigorous & more general results. 

michaelghil
Sticky Note
XX




The sources of nonautonomous dynamics

Physically open vs. closed systems: fluxes of mass, momentum & energy between the
system & its surroundings are present or not.

The mathematical framework of nonautonomous dynamical systems (NDSs) is appropriate
for physically open ones, in which the fluxes depend explicitly on time:
− skew-product flows (G. Sell)

ẋ = f (x, q), q̇ = g(q), x ∈ Rd, q ∈ Rn, with q the driving force for x.
− pullback (Flandoli, L. Arnold) or snapshot (C. Grebogi & E. Ott) attractors

dXt = f (X, q)dt + σ(X)dWt,
where Wt is a Brownian motion in Rd and dt ∼ (dW)2.

More generally, studying explicit time dependence in forcing or coefficients requires NDSs.

The term nonautonomous is used both for the deterministic case and for a unified perspective
on the deterministic & the random case.

The commonality between the two cases is (i) the independence & (ii) the semi-group
property of the driving force, whether q(t) or Wt.

Likewise, pullback attractor (PBA) is used both for the deterministic & the random case,
while in the latter case uses more specifically the phrase random attractor (RA).
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Parameter Estimation	


a) Dynamical model 	



	

dx/dt = M(x, µ) + η(t)   !
!yo = H(x) + ε(t)!
!Simple (EKF) idea – augmented state vector!
!dµ/dt = 0, X = (xT, µT)T!

b) Statistical model	


	

L(ρ)η = w(t), !L  – AR(MA) model, ρ = (ρ1, ρ2, …. ρM)!
	

Examples: 1) Dee et al. (IEEE, 1985) – estimate a few parameters in the 
covariance matrix Q = E(η, ηT); also the bias  <η> = Eη;!
	

2) POPs - Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D); 
Penland & Ghil (1993, MWR)!
!3) dx/dt = M(x, µ) + η: Estimate both M & Q from data (Dee, 1995, QJ), Nonlinear 
approach: Empirical mode reduction (EMR: Kravtsov et al., J. Clim., 2005; 
Kondrashov et al., J. Clim., 2005, J. Atmos. Sci., 2006; Kravtsov et al., in Palmer & 
Williams (Eds.), Cambridge U. P., 2010; Strounine et al., Physica D, 2010)!

€ 



Parameter estimation for space physics – II!
HERRB-1D code (Y.  Shprits) – 

estimating phase-space density !
!f and electron lifetime τL:!

Different lifetime parameterizations for !
plasmasphere – out/in: 	


τLo = ζ/Kp(t); τLi = const.!
What are the optimal lifetimes to match 

!the observations best? !



Parameter estimation for space physics – III
Daily observations from the “truth” —
     τLo = ζ/Kp, ζ = 3, and τLI = 20 —
are used to correct the model’s “wrong”
parameters, ζ = 10 and τLI = 10.
The estimated error tr(Pf) ≈ actual.
When the parameters’ assumed  uncertainty
is large enough, their EKF estimates

converge rapidly to the “truth”.

Black – actual errors for state estimation only
Red – actual errors for state and

     parameter estimation
Blue – EKF-estimated error (tr Pk

f)



Parameter estimation for energy balance models with 
memory (EBMMs) – I 

Ghil (JAS, 1976), Bhattacharya, Ghil & Vulis (JAS, 1983),
Roques, Chekroun et al. (PRS-A, 2014)
		

One considers a 1-D paleoclimate model governed by an EBM for zonally averaged 
surface air temperatures T(t, x): 

	Zonal	belt	with	heat	capacity			
C(x)	and	temperature	T(t, x),	
subject	to	incoming	radiaWon	Ri,	
outgoing	radiaWon	Ro,	and	
meridional	diffusion	D.		

c(x)
@T

@t

=
@

@x

✓
k(x)

@T

@x

◆
+ µQ(x)[1� a(x, T )]� g(x, T );

here       is the absorbed solar

radiation, with a = a(x, T)  the planetary albedo, and

Ro = g(x, T) is the terrestrial radiation, modified by the

greenhouse effect, while is a meridional 

variable.  The albedo depends on past temperatures,

because of the long time needed to build up and melt 

ice sheets.

Ri = µQ(x)[1� a(x, T )]

0  x  1
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Evolution of DA – II!

 Cautionary note:!
“Pantheistic” view of DA:!
•  variational ~ KF; !
•  3- & 4-D Var ~ 3- & 4-D PSAS !
!or EnKF. !

Fashionable to claim itʼs all the same 
but itʼs not: !

•  God is in everything, !
•  but the devil is in the details.!
!M. Ghil & P. M.-Rizzoli !
!(Adv. Geophys., 1991).!





•  No observing system without data assimilation and no assimilation   !
   without dynamicsa!

•  Quote of the day: “You cannot step into the same riverb twicec”!
(Heracleitus, Trans. Basil. Phil. Soc. Miletus, cca. 500 B.C.)!

  a of state and errors!
B Meandros!
c “You cannot do so even once” (subsequent development 
of “flux” theory by Plato, cca. 400 B.C.)!
Τα πάντα ρεί = Everything flows!


	ML+MM_DA-slides.pdf
	References




