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Main issues

- The solid earth stays put to be observed,

» Two types of information:
- direct — observations, and
(from past observations) <=
both have
- Combine the two in (an) optimal way(s)
- Advanced data assimilation methods provide such ways:
- sequential estimation — the Kalman filter(s), and

- The two types of methods are essentially equivalent for simple
linear systems (the )




Main issues (continued)

* Their performance differs for large nonlinear systems in:
- accuracy, and
- computational efficiency

« Study optimal combination(s) of, as well as improvements
over, currently operational methods (4-D Var, EnKF).
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» Data in meteorology, oceanography and space physics
— In situ & remotely sensed



Atmospheric data

Drifting 12 a0 3 semvery 2800
buoys: P, —

267

Cloud-drift: V
— 2x2259

Aircraft: V —
2x1100

Ship & land
surface: P, T, , 1 SRR e R
V, - 4x3446 |[Esmms 2 Ly L

C o =
Fig. 1 An example of the different observing systems in use during the
Global Weather Experiment,

Abbreviations used:

Aireps Standard wind observations from aircraft

Asdars, Alds High quelity wind observations from aircraft

Buoys Surface pressure observations from drifting buoys

Colba Constant level balloons

Props Radiosondes dropped from aircraft

Pilots Wind messurements from ascending balloons

Sutons Tempersture measurements from polar orbiting sateliites
Satwind Cloud drift wind measurements from geostationary sutellites
Bhips Surface observations from ships

Bynops Surface observations from land ¢

Temps Temperature, humidity and wind wmessurements from redicsondes

Bengtsson, Ghil & Kéllén (eds.):
Dynamic Meteorology,
Data Assimilation Methods (1981)

Polar orbiting
satellites: T —
5x2048

Balloons : V —
2x581x10

Radiosondes : T, V -
3x749x10

Total no. of observations = 0(10°)
scalars per 12h—24h

Nowadays 0(107) obs. & more d-o-f
of interest, too!




Ocean data — past
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Figure 4. —Time series of MBT casts.
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IR ERE
1970 1975

[

[

Total no. of
(oceanographic observations)/
(meteorological observations)
= O(10*) for the past; &
= O(107") for the future :
Syd Levitus (1982).




Ocean data — present & future

Altimetry = sea level; scatterometry = surface winds & sea state;
acoustic tomography = temperature & density; etc.

TOPEX/POSEIDON SEA LEVEL ABOVE 1993-96 MEAN, in MM. 10 DAY AVE STARTING 19990817 WOCE/PO-DAAC v1.1b

Courtesy of Tong (“Tony”) Lee, JPL
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Ocean data — past, present & future

Total no. of oceanographic
MELEASTS observations/met. ob’sns

= O(10™) for the past; &
= O(107") for the future :
Syd Levitus (1982).

NUMBER OF Q&&EQVAFIONSH{!{%@%

» 3-D ocean obs. are still not really
there: ocean tomography didn't
work out but drifters are doing a

better & better job.

XBT CASTS

] = | | Two forms of DA for the coupled
system:

| — weak coupling: models

1945 1950 1955 1960 1965 1970 1975

Figure 4.—Time series of MBT casts.

MUMBER OF OAESEQVAYION%%%

coupled, DA not;
— strong coupling: both coupled;
1955 1960 )965' I %70 T Wi’sﬂ‘- T COUId Work-

. Figure 5.—Time series of XBT casts.
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Evolution of DA

TABLE I. CHARACTERISTICS OF DATA ASSIMILATION SCHEMES IN OPERATIONAL USE AT THE

Organization
or country

Operational analysis
methods

END OF THE 1970s*
S——————

Analysis area

Analysis/forecast

Australia

F.R. Germany

Japan

Sweden

United Kingdom

USA.

USSR,

ECMWF?®

Successive correction
method (SCM)

Variational blending
techniques

Multivariate 3-D statistical
interpolation

SCM; wind-field and mass-
field balance through first
guess

Multivariate 3-D statistical
interpolation

SCM. Upper-air analyses

were built up, level by level,

from the surface

Variational height/wind
adjustment

SCM

Height-field analyses were
corrected by wind analyses

Univariate 3-D statistical
interpolation

Variational height/wind
adjustment

Hemispheric orthogonal
polynomial method

Univariate statistical
interpolation (repeated
insertion of data)

Spectral 3-D analysis

Multivariate 3-D statistical
interpolation

2-D* statistical
interpolation

Multivariate 3-D statistical
interpolation

SH¢
Regional
NH*
Regional
NH
Regional

NH

NH
Regional

NH

Regional

Global
Global
Global
NH

Gilobal

12 hr
6 hr

6 hr
(3 hr for the surface)
6 hr

12hr
(6 hr for the surface)

Climatology only as
preliminary fields
12 hr

“ After Gustafsson (1981):
b European Centre for Medium Range Weather Forecasts.
¢ 2-D is in a horizontal plane.
4 Southern Hemisphere and Northern Hemisphere, respectively.

Transition from “early” to
phase of DA in NWP:

— no Kalman filter (Ghil et al., 1981
()

- no (Lewis & Derber,
Tellus, 1985;

Le Dimet & Talagrand*Tellus,
19806)

(*) Bengtsson, Ghil & Kallén (Eds., 1981),

Dynamic Meteorology:
Data Assimilation Methods.

(Adv. Geophys.,




Basic ideas of data assimilation
and sequential estimation - |

Simple illustration

We want to estimate
T — the temperature of this room, based on the readings
T, and T, of two thermometers,

by a linear estimate 7" = a7} + a1

The interpretation will be:
T, =T - first guess (of numerical forecast model)
T, = T° - observation (R/S, satellite, etc.)

A

T = T2 - objective analysis



Basic ideas of data assimilation
and sequential estimation - |l

If the observations T, and T, are unbiased, and we want 7" to be unbiased,
then o,+a, =1,

SO one can write
> updating (sequential).

T = T1 - O@(TQ — Tl) ;
If T, and T, are uncorrelated, and have known standard deviations,
A1 = 01_2, A2 = 02_2,

then the minimum variance estimator() is

. A
70— T Ty —T1),
1 A1—|—A2(2 1)

and its accuracy is

n

(*) BLUE = Best Linear Unbiased Estimator



(Extended) Kalman Filter (EKF)

X! (ti1) = Milx"(t;)] +n(t;)
QZ(SZ] = E(Uznj )

Axl@ = xla
P/ = Bf(axl) x4
trP% = global error

Stage 1. Prediction (deterministic)
xl (1) = My [x(t;1)]
P/ (t;) = My 1P(t; )M] | +Q(t; 1)

3 = Bt +2
R;0;; = Eleje )

d= yi — H;[x/(t;)] - innovation vector

Assimilation

Forecast

Stage 2: Update (Probabilistic)

x4(t;) = x/ (t;) + Ki(y) — Hi[x (1;))

PY(t;) = (I - K;H,)P/(t;)

K; = P/(t)HI [HP/ (t; H] + R;]™!
subject to Ok trP? =
M and H are the linearizations of M and H




{6h fcst} — {conventional (NoSat)}

Advection of
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F16, 5 The rmsdifference between the & h forecast of the 30 mb geopotential height field and the analy-

sisforthe period 5-211 1979, Conto terval is 20m. a) Rms differeace betw the NOSAT analy-
(BU//. Amer. MeteorOl. SOC-, 1 982) \i: ::rd fc-f:.:l\l b) Rm:"::':'grcn:( h::l:clczlt,::tl:\gés[ J‘T\I:si-, :‘n‘\: :.;.t::a\‘lc Do, i3S




The main products of estimation()

« Filtering (F) — “video loops”
« Smoothing (S) — full-length feature "movies”
* Prediction (Pr) — NWP, ENSO

- Parameter estimates (Pe) — all of the above + DADA ()

& F P Distribute all of this over the Web
L l to scientists, and to the
“person in the street”(or on the

O o . . .
/O—oo\o/‘\/ information superhighway).

In a general way: Have fun ()

O)F + S + P: N. Wiener (1949, MIT Press); Pe — a lot recently
() DA for Detection & Attribution; (V) or, these days, use machine learning (ML)
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» Why does data assimilation work in planetary flows?
— geostrophic adjustment
— model & noise parameters — at & below grid scale
— stability of the forecast-assimilation (FA) process



A little history - |

SVENSKA GEOTFYSISKA FORENINGEN

VOLUME 2, NUMBER 4 Te l l u S NOVEMBER 19350

A QUARTERLY JOURNAL OF GEOPHYSICS

Numerical Integration of the Barotropic Vorticity Equation

By J. G. CHARNEY, R. JORTOFT!, J. von NEUMANN
The Institute for Advanced Study, Princeton, New Jersey?

1. Introduction

One of the aims of the meteorological computer
project at Princeton is the application of the hydro-
dynamic equations to forecasting. Initial conditions
for this problem would be furnished by the observa-
tions at a starting time, Z. At this time it would be
required to know the meteorological variables and
some of their space derivatives at certain grid points.
This could be accomplished by the normal modes of
analysis, that is, by subjectively drawing isopleths,
and approximating the derivatives by ratios of finite

differences.

(Manuscript received 1 November 1950)

JOURNAL OF METEOROLOGY VOLUME 6

OBJ ECTIVE WEATHER-MAP ANALYSIS

By H. A. Panofsky

New York University!
(Manuscript received 7 February 1949)

ABSTRACT

Wind and pressure fields are fitted by third-degree polynomials in areas of the order of 108 square miles.
Expressions involving derivatives of wind and pressure are computed and the question of computation of
geostrophic deviations is re-examined. A method of connecting polynomials in separate areas is investigated.

The following conclusions are drawn:

1. Isopleths and streamlines drawn from the polynomials greatly resemble subjective isopleths and stream-
lines. In all cases studied, the smoothing seems to be adequate.

2. Horizontal divergence and vertical velocities can be determined as well from the polynomials objec-
tively as by other subjective methods. The errors of observation influence the magnitude of these quantities
considerably, but usually do not affect the sign.

3. On the scale of these measurements, reliable pressure gradients can be obtained objectively; however,
the Laplacian of pressure is very much affected by the technique of analysis and by observational errors.

4. Reliable values of the geostrophic deviations can be obtained only under favorable conditions. Hence
any method of integration of the fundamental equations which requires knowledge of the geostrophic devia-
tions is to be avoided.



A little history - |l

Use of Incomplete Historical Data to Infer the Present State of the Atmosphere

J. CearneYy, M. HALEM! AND R. JAsTROW!

Dept. of Meteorology, Massachusetts Institute of Technology, Cambridge, Mass.
22 August 1969

One of the principal objectives of the Global Atmo-
spheric Research Program (GARP) is the acquisition of
data which define the synoptic state of the atmosphere
globally for use in long-range prediction. Since all pro-

1Institute for Space Studies, Goddard Space thht Center,
NASA, New York, N. Y.

posed global sounding systems suffer limitations, the
concept has arisen of a combination of several such
systems permitting trade-offs among the meteorological
pa.rameters and between space and time.? The system

" 3See pref greface in “Plan for U, S. Participation in the Global

Atmospheric Research Program,” National Academy of Sciences
Washington, D. C., 1969. ) 1

“If it should prove to be possible to obtain the large-scale wind field from temperatures
alone, the time-table for the implementation of GARP might be substantially advanced.”

Time-Continuous Assimilation of Remote-Sounding Data
and Its Effect on Weather Forecasting

M. GHIL!, M. HALEM AND R. ATLAS
Laboratory for Atmospheric Sciences, NASA Goddard Space Flight Center, Greenbelt, MD 20771

(Manuscript received 7 April 1978, in final form 6 October 1978)



Stabilization of the forecast—assimilation (FA) system — |

Assimilation experiment with the Lyapunov vectors
40-variable Lorenz (1996) model
Spectrum of Lyapunov exponents:

Light blue: AUS with 1-hr updates

NO assimilation
AUS 3h

Carrassi, Ghil, Trevisan & Uboldi s
(Chaos, 2008) '
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DA as a random dynamical systems (RDS) problem

» Recall the forecast—assimilation (FA) steps of sequential estimation: in continuous time, & sloppy
notation, one can write

3 =(A— KH)i+ Kz

» Clearly Kz is a forcing by the observations z, with some weights K, optimal (“Kalman”) or not —
nudging, variational or what not.

» The mathematical framework of “open” dynamical systems is appropriate
— skew-product flows (G. Sell)
— pullback (Crauel & Flandoli, L. Arnold) or snapshot (C. Grebogi & E. Ott) attractors
References
H. Crauel and F. Flandoli. Attractors for random dynamical systems. Probab. Theory
Related Fields, 100(3):365—-393, 1994.
F. J. Romeiras, C. Grebogi, and E. Ott, Multifractal properties of snapshot attractors
of random maps, Phys. Rev. A, 41:784-799, 1990.
G. R. Sell. Non-autonomous differential equations and dynamical systems. Trans. Amer.
Math. Soc., 127:241-283, 1967.
L.-S. Young, What are SRB measures, and which dynamical systems have them?
J. Stat. Phys., 108, 733—754, 2002.



The sources of nonautonomous dynamics

Physically open vs. closed systems: fluxes of mass, momentum & energy between the system
& its surroundings are present or not.

The mathematical framework of nonautonomous dynamical systems (NDSs) is appropriate
for physically open ones, in which the fluxes depend explicitly on time:
— skew-product flows (G. Sell)
x=f(x,9), =2g(q), x € R, q € R", with g the driving force for x.
— pullback (Flandoli, L. Arnold) or snapshot (C. Grebogi & E. Ott) attractors
dXt :f(X, q) dt+ O’(X) th,
where W; is a Brownian motion in R? and dt ~ (dW)Z.

More generally, studying explicit time dependence in forcing or coefficients requires NDSs.

The term nonautonomous is used both for the deterministic case and for a unified perspective
on the deterministic & the random case.

The commonality between the two cases is (i) the independence & (ii) the semi-group
property of the driving force, whether g(t) or W;.

Likewise, pullback attractor (PBA) is used both for the deterministic & the random case,
while in the latter case uses more specifically the phrase random attractor (RA).

Michael Ghil (ENS & UCLA) RDS for DA 11 February 2022 2/4



Time-dependent forcing, |

€ Much of the theoretical work on the intrinsic variability of the wind-driven
ocean circulation has been done with time-independent wind stress.

€ To address truly coupled ocean—atmosphere behavior and climate change
an important step is to examine time-dependent wind stress.

€ The proper framework for doing so is the theory of non-autonomous and
random dynamical systems (NDS and RDS).

€ We do so here with a “toy” model given by the low-order truncation of the
QG, equivalent-barotropic potential vorticity equation (PVE).

€ The forcing is deterministic, aperiodic, and dominated by multi-decadal
variability.

z(s,t;xg), with z¢ varying
T

The pullback attractor of a linear, o | —n-ze-2)|
scalar ODE, )
jj: —Cl{a?—l—()'t, @ > O’ O > O’ 50F
IS given by ol
O— 1 -100
alt) = —(t — — ~150
( ) 87 ( Og) 200




Formally, the indexed family &/ of all pullback attracting sets A; is termed the pullback attractor
(PBA) of the NDS, if the following two conditions are fulfilled:

(i) each snapshot A; is compact and the family &/ = { A(t) };cr is invariant with respect to
the dynamics

X(t,5;X0) € Ay Vs <tand Xp € As; and (1)
(ii) the pullback attraction occurs for all times:
Lim |X(t,5;X0) — At =0 VL (2)
S——00
BO-r)w)  BOTIW) {o}xX {0(NoxX

\ @) = dw; 1) = SOOw)
() = At =0 = gt ) (w1 = 0)

—

———
0(-t)o o 0 )w Q
6(-T)0

Figure: Schematic diagram of an RA &/ (w). From Ghil, Chekroun & Simonnet (2008).

Michael Ghil (ENS & UCLA) RDS for DA 11 February 2022



Stabilization of the forecast—assimilation (FA) system — I/

The rigorous proof of the FA process stabilizing the unstable, chaotic dynamics of planetary
flows — based on the above ideas, along with other methods from stochastic calculus and
nonlinear filtering — is given by Theorems | and Il below:

Theorem | (nonlinear). If the coefficients f, i and o and the measures 7y and y € P,(R%)
satisfy suitable conditions, then there exists R = R (7, p#) such that

sup]E[Wz(rrf, )] <R.
>0

Theorem Il (linear). If the coefficients f, i and o and the measures 7y and u € Pp(R?)
satisfy suitable conditions, then we have that

. i _
tIH?O Wy (mry, ) = 0.

Here, the Wasserstein distance is defined by
1/2
Wa(u,v) = (infE[IX - Y?]) ", ©)

where E[Z] denotes the expected value of Z and the infimum is taken over all joint distribu-
tions of the random variables X and Y with marginals y and v, respectively.

D. Crisan and M. Ghil, 2022: Asymptotic behavior of the forecast—assimilation process with
unstable dynamics, Chaos 33(2), doi:10.1063/5.0105590.

Michael Ghil (ENS & UCLA) RDS for DA 28 March 2023 4/4
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Use of Machine Learning (ML) in DA

The applications of ML to DA have proliferated in recent years:

m For model error correction (Farchi et al., 2021).

m As the forecast model itself (Chattopadhyay et al., 2021).

m Can be implemented as an online process, where DA is used to provide
better training data for ML, and ML is used to forecast (Brajard et al., 2020).

m To emulate unresolved scales (Brajard et al., 2021).
m For learning the assimilation process directly (McCabe and Brown, 2021).

In forecasting, due to the high dimensionality of the atmosphere and its models,
hybrid methods that combine ML forecasts with physical models are necessary
(Pathak et al., 2018).

1/4



Multi-model data assimilation (MM-DA) — |

m Can we optimally combine ML, physical models, and observations for state
estimation?

m ldea: use multi-model DA.

Forecast for time ¢ Observations Forecasts for time ¢~ Observations
AN
Weights: (PP, +Q,,) ! Weight: R™!
Weight: (PP + Q)~! Weight: R™! S\
Analysis Analysis

\

Apply models M,,

VN

Apply model M

Forecast for time ¢41 > Forecast for time #+1

2/4



Multi-model data assimilation (MM-DA) — Il

m Consider a generalization of the Kalman filter cost function: from

(¢ =) T(P) T (x = x) + (Hx — y) "R™} (Hx — y), (1)

to
Z(Gmx — )T (PE) M (Gmx — xb,) 4 (Hx — y) "R (Hx — v), (2)

where each model m has its own forecast state x', with forecast error covariance
matrix Pf, and operator G,.

m MM-DA is also a generalization of the Bayesian formulation of the KF and is the
best linear unbiased estimator.

m In Bach and Ghil (2022), we develop a multi-model EnKF and show that

m it can outperform a multi-model ensemble,
m as well as the best model in the ensemble.

m Future: test as a hybrid DA and forecasting method with physical and ML models.

Eviatar Bach and Michael Ghil. A multi-model ensemble Kalman filter for data
assimilation and forecasting. arXiv:2202.02272 [physics, stat], February 2022.

3/4
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» Novel areas of application
— Space physics

— detection & attribution (DADA)



Space physics data

... and now

Space platforms in Earth’s magnetosphere



Detection & Attribution (D&A)

Observed Observed
forcing system behavior

=

Temperature,
precipitation, ...
Trends + events

Evidence of
causal links?
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» Concluding remarks and bibliography



Computational advances

— more computing power (CPU throughput)
— larger & faster memory (3-tier)

— better numerical implementations of algorithms

— automatic adjoints

— block-banded, reduced-rank & other sparse-matrix algorithms
— better ensemble & particle filters, including localization

— efficient parallelization, ....

- Design integrated observing—forecast— systems!




Observing system design

> Need (independent) observations than to be tracked:

- “features” (Ide & Ghil, 1997a, b, DAO);

- instabilities (Todling & Ghil, 1994 + Ghil & Todling, 1996, MWWR);

- trade-off between mass & velocity field (Jiang & Ghil, JPO, 1993);
(Trevisan & colleagues) + results (Crisan & Ghil).

» The cost of advanced DA is than that of instruments &
platforms:
- at best use DA of instruments & platforms.
- at worst use DA to determine instruments & platforms
(advanced OSSE)

> Use , if forward modeling is possible (observing operator H)
- satellite images, 4-D observations => :
- pattern recognition in observations and in phase-space statistics =>




Conclusions

can play a useful role in devising
better practical algorithms, and vice-versa.

- Judicious choices of observations and method can

* Trade-off between cost of observations
and of

« Assimilation of ocean data in the
is useful.

- They help estimate both parameters.

- Changes in estimated parameters compensate for




The DA Maturity Index of a Field

few data, poor models

e The : Science is . don’t bother me with the facts!
e The observer/experimentalist: Don’t ruin my beautiful data with
your lousy

* Better data, so-so models.
o Stick it (the obs’ns) in — direct insertion, nudging.

 Advanced DA:

 Plenty of data, fine models.
« E(n)KF, 4-D Var (2" duality); UKF, particle filters, etc.

(Satellite) images — (weather) forecasts, climate “movies” ...




Concluding remarks

We’ve come a long way in 60 years — some advances are laborious and
incremental (e.g., sequential vs. control-theoretical methods), but others
are fresh and exciting.

The latter include new areas of application
— biology, geomagnetism, paleoclimate, space physics, ..., DADA
as well as novel methodological challenges
— multi-scale and multi-model problems (MM-DA)
— various forms of machine learning,
— inverse problems for evolution equations,
Including climate simulation & sensitivity studies,
& uncertainty quantification (UQ)

Technological advances both pose new problems (massive data sets, higher
resolution, ...) and help solve them.

Overall, it’s a brave new world, in which data and models actively speak to each
other, and we do so to both: enjoy!
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“Miss Peterson, may I go home? I can’t assimilate
any more data today.”
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A little history - lli

Charney et al., JAS, 1969: “If it [were] possible to obtain the large-scale wind field from temperatures
alone, the time-table for the implementation of GARP might be substantially advanced.”

Ghil et al., MWR, 1979: “Satellite-sounding data, though promising, provide only one of
the basic variables, viz., temperature. Moreover, while the conventional data sets are
available simultaneously over the entire globe, temperature sounding data are obtained
only in asynoptic, time-continuous fashion. In one of the earliest efforts at using remote-
sounding temperatures for NWP, Charney et al. (1969) put forward the conjecture that a
complete knowledge of the continuous temperature history of the atmosphere will
determine other initial state variables, in particular the winds.

Tellus (1980), 32, 198-206

The compatible balancing approach to initialization,
and four-dimensional data assimilation

By MICHAEL GHIL, Courant Institute of Mathematical Sciences, New York University, 251 Mercer
Street, New York, N.Y. 10012, U.S.A. and Laboratory for Atmospheric Sciences, NASA Goddard Space
Flight Center, Greenbelt, MD. 20771, U.S.A.
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A little history - IV ©

Charney et al., JAS, 1969: “If it [where] possible to obtain the large-scale wind field from temperatures
alone, the time-table for the implementation of GARP might be substantially advanced.”

In a rotating Cartesian (x,y)-coordinate system the linearized shallow-water equations (SWEs) are
U + ¢ — fv =0,
Ut + Qby + f’LL — 07
¢t + ®(ug +vy) =0,

with (u,v) the velocity, ¢ the geopotential, and f the Coriolis parameter. In this model, knowing the
history of the mass field means knowing®(z, y, t) and hence (¢¢,¢4:) at any given instant.

Differentiating the three equations above w.r.t. x, y and t, respectively, and substituting the mixed
derivatives u,, and v, from the first two into the third one, yields:

(I)f(’Uoc — uy) - q)(qba:x + ¢yy) =+ gbtt = 0.

This equation, together with the continuity equation above, leads to the Cauchy-Riemann system
for the velocity components below:

Uy + Uy = _¢t/q)7
Uy — Vg = — _1(A¢ — ¢4/ P),

where Ais the Laplacian. Similar diagnostic relations for the velocities were obtained for nonlinear
SWEs and baroclinic models. E. Titi & colleagues obtained recently rigorous & more general results.
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The sources of nonautonomous dynamics

Physically open vs. closed systems: fluxes of mass, momentum & energy between the
system & its surroundings are present or not.

The mathematical framework of nonautonomous dynamical systems (NDSs) is appropriate
for physically open ones, in which the fluxes depend explicitly on time:
— skew-product flows (G. Sell)
i =f(x,q), §=2g(q), x € R?, g € R", with q the driving force for x.
— pullback (Flandoli, L. Arnold) or snapshot (C. Grebogi & E. Ott) attractors
dXt :f(X, q) dt+ O’(X) th,
where W; is a Brownian motion in R? and dt ~ (dW)Z.

More generally, studying explicit time dependence in forcing or coefficients requires NDSs.

The term nonautonomous is used both for the deterministic case and for a unified perspective
on the deterministic & the random case.

The commonality between the two cases is (i) the independence & (ii) the semi-group
property of the driving force, whether g(t) or W;.

Likewise, pullback attractor (PBA) is used both for the deterministic & the random case,
while in the latter case uses more specifically the phrase random attractor (RA).

Michael Ghil (ENS & UCLA) RDS for DA 11 February 2022



Parameter Estimation

dx/dt = M(x, u) + n(f)

y° = H(X) + &(1)

Simple (EKF) idea — augmented state vector
dw/dt=0, X=(xT, u")T

L(p)n = w(1), L — AR(MA) model, p = (p4, P2y ---- P)

Examples: 1) Dee et al. (IEEE, 1985) — estimate a few parameters in the
covariance matrix Q = E(n, n); also the bias <n> = En;

2) POPs - Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D);
Penland & Ghil (1993, MWR)

3) dx/dt = M(x, u) + n: Estimate both M & Q from data (Dee, 1995, QJ), Nonlinear
approach: Empirical mode reduction (EMR: Kravtsov et al., J. Clim., 2005;
Kondrashov et al., J. Clim., 2005, J. Atmos. Sci., 2006; Kravtsov et al., in Palmer &
Williams (Eds.), Cambridge U. P., 2010; Strounine et al., Physica D, 2010)




Parameter estimation for space physics — I

HERRB-1D code (Y. Shprits) —
estimating phase-space density CRRES Observations

fand electron lifetime <:
o L 2 8 9 WW
8 =124 (L2 ) - L 'U l“”

TL

Different lifetime parameterizations for

plasmasphere — out/in:
T, = GK,(b); T, = const. v
What are the lifetimes to match Il " '“"' m.N W'

the observations best? 40 me(darg. 100

ILO=§/Kp, =3, tL|=1 0

40 60 40 60
Time(days) Time(days)




Parameter estimation for space physics — il

Daily observations from the “truth” —
T,=6/K,E=3,andt =20 —

are used to correct the model’s

parameters, § = 10 and ¢, = 10.

The estimated error tr(Pf) = actual.

When the parameters’

is large enough, their EKF estimates

converge rapidly to the “truth”.
RMS error from the truth

—KF
—EKF/Parameter
— Estimated

240 260 280
Days of Year, 1990

a) Estimated T,

—"u

—_true T,

260 300
b) Estimated C

—c
- - -error

240
c) Estimated rI_O=C/Kp (48hr mean)

260
Days of Year, 1990

Black — actual errors for state estimation only
— actual errors for state and
parameter estimation
Blue — EKF-estimated error (ir P,




Parameter estimation for energy balance models with
memory (EBMMs) - |

One considers a 1-D paleoclimate model governed by an EBM for zonally averaged
surface air temperatures T(t, x):

C(x)0,T (x.1)

(@) 5 = 52 () 51 ) + n QL - al )] - g(a. T

here R; = pQ(x)[1 —a(x,T)] is the absorbed solar
radiation, with a = a(x, T) the planetary albedo, and
R,= g(x, T) is the terrestrial radiation, modified by the
greenhouse effect, while 0 < z <1 is a meridional
variable. The albedo depends on past temperatures,

because of the long time needed to build up and melt Zonal belt with heat capacity

C(x) and temperature T(t, X),
subject to incoming radiation R,
outgoing radiation R, and

ice sheets.

Ghil (JAS, 1976), Bhattacharya, Ghil & Vulis (JAS, 1983), 0! 1atio
Roques, Chekroun et al. (PRS-A, 2014) meridional diffusion D.
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Evolution of DA - li

TABLE IV. DUALITY RELATIONSHIPS BETWEEN STOCHASTIC ESTIMATION AND DETERMINISTIC

CONTROL® C t 1 0 Ot ]

A. Continuous (linear) Kalman Filter a u I n a ry n e -
System Model WD) = FOW'(®) + GOb'(@), b ~ N[0,0()] 13 . v gy s
Measurement Model wo(t) = H{H)w'(®) + b°(t),  b°(1) ~ N[O, R(1)] P a nt h e I St I C VI eW Of DA :
State estimation W) = F()w(t) + K(x)T[w"(t) — H(t)w';z)], w0} = w}
Error covari P(t) = F()P(t) + POFT(t) + GO)Q(MG'(1) A A

pmpagati:r?ce —K@R@K(@), [ P(O)t= Py vari at [0]g! al = K F ,

(Riccati Equation) )
Kalman Gain K() = P@)HT(H)R™'(t)
Initial conditions E[w'(0)] = w}, E{[w'(0) — ws1[w'(0) — wil™} = PR, 3_ & 4_ D Var (~J 3 = & 4_ D P SAS
Assumptions R™}(1) exists

E{b'()[b°()]"} =0
Performance Index pé‘(t) = E{[Wr"}* w]lw" — w1} Or E n K F

B. Continuous (linear) Optimal Control

System M ') = F fi I i it’
I‘szz:s?:remoeiflModel ‘;"((tt)) =1‘;v((l[))“&)] :yge(z“ffgriables are measured) FaS h IO n a‘ b I e to CI al m It S a-I I th e Sa m e

Performi trol (0 = —K(w() it’ .
pwf,iﬁ;'ﬁﬁfﬁ;ﬁagmon ‘1‘"7(!:) = —FT[(¢YFl(t) — B)F) — O + PoH®R®) b Ut It S nOt .
(Riccati Equation) 5 5 o
Control Gain K@) = RTYH@®P@) . . .
Terminal conditions w(t) =0 G Od I S I n eve ryt h I n g y
P(t) = Q¢

Cost function Jw,u] = wipw, + J‘: WO 0w + T (OR@u(] dt b ut t h e i s i n t h e

C. Estimation-Control Duality

Estimation Control

to initial time t; final time ( A d V, G eO p hyS .

w(t) unobservable state variable of random w(t) observable state variable to be Y
controlled

wO(t) random observations u(t) deterministic control

Ft) dynamic matrix F7(¢) dynamic matrix

@(t) covariance matrix for the model errors 0(t) quadratic matrix defining acceptable
errors on model variables

H{1) effect of observations on state variables H(r) effect of control on state variables

P(t) covariance of estimation error under B(t) quadratic performance under

optimization optimization
K(ty weighting on observation for optimal K(t) weighting on state for optimal control

estimation

4 (A), Kalman filter as the optimal solution for the former problem; (B), optimal solution for
tlie latter problem; (C), equivalences between the two (after Kalman, 1960, and Gelb, 1974,
Section 9.5; courtesy of R. Todling).
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ALPINE FORECASTS DEMONSTRATED

GULF STREANM FIELD STUDY

The Data Assimilation Research Testbed

THE DATA ASSIMILATION
RESEARCH TESTBED

A Community Facility

BY JEFFREY ANDERSON, TiM HOAR, KeviN RAEDER, Hul Liu, NANCY COLLINS,
RYAN TORN, AND AVELINO AVELLANO

DART, developed and maintained at the National Center for Atmospheric Research, provides

well-documented software tools for data assimilation education, research, and development.

model forecasts to estimate the state of a physi-

cal system. Developed in the 1960s (Daley
1991; Kalnay 2003) to provide initial conditions for
numerical weather prediction (NWP; Lynch 2006),
data assimilation can do much more than initialize
forecasts. Repeating the NWP process after the fact
using all available observations and state-of-the-
art data assimilation produces reanalyses, the best

D ata assimilation combines observations with
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22009 American Meteorological Soclety

available estimate of the atmospheric state (Kistler
et al. 2001; Uppala et al. 2005; Compo et al. 2006).
Data assimilation can estimate the value of existing
or hypothetical observations (Khare and Anderson
2006a; Zhang et al. 2004). Applications include
predicting efficient flight paths for planes that re-
lease dropsondes (Bishop et al. 2001) and assessing
the potential impact of a new satellite instrument
before it is built or launched (Mourre et al. 2006).
Data assimilation tools can also be used to evalu-
ate forecast models, identifying quantities that are
poorly predicted and comparing models to assess
relative strengths and weaknesses. Data assimilation
can guide model development by estimating values
for model parameters that are most consistent with
observations (Houtekamer et al. 1996; Aksoy et al.
2006). Assimilation is now used also for the ocean
(Keppene and Rienecker 2002; Zhang et al. 2005),
land surface (Reichle et al. 2002), cryosphere (Stark
et al. 2008), biosphere (Williams et al. 2004), and
chemical constituents (Constantinescu et al. 2007).
Assimilation tools under different names are used
in other areas of geophysics, engineering, economics,
and social sciences.

The Data Assimilation Research Testbed (DART)
is an open-source community facility that pro-
vides software tools for data assimilation research,
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Overall Conclusion

®* No observing system without and no assimilation
without a

* Quote of the day: “You cannot step into the same river® twice¢”
(Heracleitus, Trans. Basil. Phil. Soc. Miletus, cca. 500 B.C.)

a of state and errors

BMeandros

¢ “You cannot do so even once” (subsequent development
of “flux” theory by Plato, cca. 400 B.C.)




	ML+MM_DA-slides.pdf
	References




