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ocean circulation

horizontal wind-driven circulation and meridional overturning circulation (MOC)

surface currents in red, deep circulation in blue

from Lumpkin (2012)



Sandström’s inference

Bjerknes’ circulation theorem for circulation C =
∮

Γ (u + Ω× r ) · ds

Du
Dt

= −2Ω× u − 1

ρ
∇p −∇Φ + F → DC

Dt
=

∮
Γ

ds ·
(
−1

ρ
∇p + F

)
where Ω denotes Earth’s rotation and Γ a closed curve

for steady C balance between torques by p and friction/forcing F
put curve Γ into the MOC, assume that friction/forcing only deaccelarates

→ for steady MOC, pressure torque must be the driver

−
∮

ds · 1

ρ
∇p = −

∮
vdp =

∮
pdv > 0 , v = 1/ρ

expansion (dv > 0 by heating) must take place at higher pressure (p − p̄ > 0)

compression (dv < 0 by cooling) must take at lower pressure (p − p̄ < 0)

p is largely determined by hydrostatic pressure → p ∼ depth

no driving for heating and cooling at same depth → Sandström (1908)

atmosphere is like a heat engine, but ocean is like a refrigerator

ocean’s MOC driven by direct mechanical work (surface wind stress)

or small-scale mixing in interior by breaking internal gravity waves

(V. Bjerkness, 1862-1951, Norwegian meteorologist)
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continuous gravity wave spectra

spectral slopes in frequency and wave number close to −2

→ so-called Garrett-Munk (GM) spectrum for internal waves

from Polzin and Lvov (2011)



continuous gravity wave spectra

from Pollmann (2020)
global slope distribution of vertical wavenumber from ARGO floats

spectral slopes in vertical wavenumber are close to −2



radiative transfer equation for gravity waves

gravity waves propagating through slowly changing environment

ω = Ω(x , z ,k ,m) , ẋ = ∇kΩ , ż = ∂mΩ , k̇ = −∇xΩ , ṁ = −∂zΩ

wave energy E(x , z ,k ,m) is governed by radiative transfer equation

∂tE + ∇x · (ẋE) + ∂z(ż E) + ∇k · (k̇E) + ∂m(ṁ E) = −(ż/ω)k · (∂zU) E + S

other names: Boltzmann transport equation, energy transport equation, kinetic equation, ...

propagation in physical space (x , z) by group velocity ẋ , ż

propagation in wavenumber space (k ,m) by refraction k̇ , ṁ

energy transfer to/from mean flow U(z) by (ż/ω)k · (∂zU) E (”wave drag”)

with U(x , z) more terms appear (”wave capture”)

and forcing, dissipation, wave-wave interaction contained in S

co-integrate radiative transfer equation in ocean model

→ predict how waves behave, but six-dimensions are too many

→ reduce complexity by integration in wavenumber space
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IDEMIX concept

reduce complexity by integration in wavenumber space

∂tE + ∇x · (ẋE) + ∂z(ż E) + ∇k · (k̇E) + ∂m(ṁ E) = −(ż/ω)k · (∂zU) E + S

assume E ≈ EA with total wave energy E (x , z , t) =
∫
E dkdm and

∫
A dkdm = 1

with spectral shape A(k ,m) as in GM spectrum∫
ż E dkdm = c E , c =

∫
ż E dkdm/E ≈

∫
ż A dkdm

with bulk vertical group velocity c , and similar for other terms

to treat S turns out to better define energies of up- and downward propagating waves

E± =

∫ ∫ ∞
−∞

max(±σ, 0)E dkdm

c± =

∫ ∫ ∞
−∞

max(±σ, 0)ż E dkdm/E± (= c)

with σ = sign(ż)

several different version of IDEMIX focus on different aspects, here treatment of S

(IDEMIX; Internal wave Dissipation, Energy and MIXing)
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max(±σ, 0)ż E dkdm/E± (= c)

with σ = sign(ż)
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IDEMIX concept

ignore horizontal propagation and wave-mean flow interaction (Olbers and Eden, 2013)

∂tE
± ± ∂z(c E±) =

∫
max(±σ, 0)S dkdm

with total wave energy E± =
∫ ∫∞
−∞max(±σ, 0)E dkdm with σ = sign(ż)

and bulk vertical group velocity c± = c =
∫ ∫

ż A dkdm

rewrite for E = E+ + E− and ∆E = E+ − E−

∂tE + ∂z(c ∆E )
!

= −µE 2 , ∂t∆E + ∂z(c E )
!

= −τ−1∆E

closure for
∫
Sdkdm:

- dissipation in S acts to take away total energy with law µE 2

- it also damps asymmetries in up/downward propagating wave energy at time scale τ

approximate symmetry in sign(ż) is observed

µE 2-law was proposed by Henyey et al (1986), and is basis of ”fine-structure” closure

ignoring ∂t∆E and combining yields simple equation to be co-integrated in ocean model

∂tE = ∂z(cτ∂z(c E ))− µE 2

boundary conditions for vertical energy flux cτ∂z(c E ) at surface and bottom

by oscillatory surface Ekman pumping and tidal flow over bottom
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∂tE = ∂z(cτ∂z(c E ))− µE 2

boundary conditions for vertical energy flux cτ∂z(c E ) at surface and bottom

by oscillatory surface Ekman pumping and tidal flow over bottom



energy transport by wave-wave interaction

log(m/m∗) log(m/m∗)

Eden, Olbers, Pollmann (2020)

estimate of ∂tE by wave-wave interaction (part of S) in GM spectrum

left: with scattering integral/Hasselmann’s weak interaction theory

right: with numerical model

energy loss at 2f < ω < 3f by PSI,

energy gain at lower ω but larger m → wave breaking/dissipation
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parameterisation for wave-wave interactions/dissipation

Coriolis parameter f /[104 s−1] bandwidth c∗/[m/s] and slope s of GM spectrum

from Eden, Pollmann, and Olbers (2019)∫
dωdm |∂tE±|2<ω/f<3 (dots) vs. wave dissipation parameterisation µE 2 (lines)

µE 2 = 0.6 f c−2
? (s − 1)−3

(∫
dωdmE±

)2

excellent comparison of dissipation parameterisation



zoo of IDEMIX models

Olbers and Eden (2013): simple IDEMIX as vertical mixing parameterisation

Eden and Olbers (2014): extended IDEMIX with resolved horizontal propagation

Eden and Olbers (2017): IDEMIX for Rossby waves (meso-scale eddies)

Olbers and Eden/Eden and Olbers (2017): with wave-mean flow interaction

Quinn, Eden, Olbers (2020): same but for atmosphere and with critical layers

Eden, Olbers, Eriksen (2021): IDEMIX for lee waves

Olbers et al (2023): IDEMIX with energy and bandwidth equation

rms sea surface height due to internal tides in IDEMIX (2014) (left), observations (right)
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simple IDEMIX model by Olbers and Eden (2013), co-integrated in ocean model

∂tE = ∂z(cτ∂z(c E )) + ∇ · chτh∇ch E − µE 2

boundary conditions for vertical energy flux cτ∂z(c E ) at surface and bottom

by oscillatory surface Ekman pumping and tidal flow over bottom

co-integrate also equation for small-scale turbulent kinetic Etke energy (Gaspar et al 1990)

∂tEtke = ∂zctkeKm∂zEtke + Km (∂zu)2 + µE 2 − KN2 − cεE
3/2
tke L

−1

with diffusivity K ∼ E
1/2
tke L to be used in ocean model, and diagnostic mixing length scale L

use IDEMIX in three global ocean models with identical initial and boundary conditions

ICON-O (MPI-M) FESOM (AWI) MITgcm (M.Losch)

horizontal resolution ca. 40 km ca. 20–100 km ca. 20–111 km

vertical levels 64 48 50

grid type triangular triangular rectangular

grid staggering C-grid B-grid C-grid
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comparison allows to assess model-independent response to more realistic vertical mixing
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Gutjahr, Johann Jungclaus, Nikolay Koldunov, Peter Korn, Dirk Olbers, and Carsten Eden,

Parameterized internal wave mixing in three ocean general circulation models,

(almost) submitted to JAMES (2023)
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surface forcing is smaller and kept the same in all experiments

forcing A: 1.88TW, from dissipation closure in barotropic tidal model

forcing B: 1.04TW, from linear theory (Bell, 1975)

forcing C: 0.94TW, from high-resolution ocean model with tides (STORMTIDE2)

limitations and biases in all forcings → uncertainty



comparison of mixing work KN2 (average below 1000m) along 170oW

from observations, reference experiments and with IDEMIX

large variations in models, but also large error (factor 2-3) in observations

KN2 with IDEMIX more realistic than in reference



REF forcing A - REF forcing B - REF forcing C - REF

thermocline depth (12oC isotherm) in reference and difference using IDEMIX

coherent change of thermocline

mostly deeper thermocline with more mixing/IDEMIX



REF forcing A - REF forcing B - REF forcing C - REF

mixed layer depth in reference and with IDEMIX

coherent response of deeper mixed layer in subpolar North Atlantic,

due to stronger preconditioning for convection



REF forcing A - REF forcing B - REF forcing C - REF

(residual mean) meridional overturning streamfunction in Atlantic in reference/ with IDEMIX

coherent response of stronger upper (wind-driven) cell in relation to deeper convection depths

(we do not know the reason for this relation)

incoherent response in lower (mixing-driven) cell



REF forcing A - REF forcing B - REF forcing C - REF

meridional overturning streamfunction in Indo-Pacific in reference/ with IDEMIX

coherent response of stronger (wind-driven) shallow overturning cells

due to larger surface area of ventilated density layers

incoherent model response in (mixing-driven) bottom cell

excessive transports in FESOM-A due to too deep convection depth in Wedell Sea



Summary

IDEMIX concept reduces dimensions of radiative wave energy transport equation

used for vertical mixing in three global ocean models with three tidal forcing functions

larger and more realistic mixing work KN2 with IDEMIX

one forcing function overestimates KN2 in Southern Ocean

Coherent model response :

deeper thermocline depth

increase of (wind-driven) shallow overturning cells in Indo-Pacific

deeper mixed layer depths in subpolar North Atlantic

increase of (wind-driven) upper cell of Atlantic overturning circulation

increase in northward heat transport in Atlantic

incoherent model response in (mixing-driven) lower cell in Atlantic and Indo-Pacific

due to excessive numerical mixing?

Brüggemann et al: Parameterized internal wave mixing in three ocean general circulation models,

(almost) submitted to JAMES (2023)
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