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Why do we need post-processing and how do we do it?

m Systematic errors in Numerical Weather Prediction (NWP) Models;

m Statistical correction methods:

m Establish a statistical relationship between the forecast and the corresponding
observations on the training period;

m Use it to correct future forecasts -> post-processed forecast (pp).
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Post-processing methods

Two main groups: Parametric and non-parametric.
-> Parametric : Ensemble Model Output Statistics (EMOS) (Gneiting, 2014)
Distribution of Distribution of
raw forecast post-processed
forecast
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Ensemble Model Output Statistics (EMOS)

m Estimate the conditional distribution of y, the weather variable of interest,
given the forecasts of the different members x4, ..., zy;

Y | I, .., TN ™~ p(Y | x1, 7$N)
m Temperature: Gaussian underlying distribution (Gneiting et al., 2005)
Y|z, .oy ~N (Oéo + aipe, Bo + 5102> ;

where p. and o2 are the mean and variance of the ensemble;
-> oy, a1 correct for systematic biases in the ensemble mean,
-> [, 51 adjust the dispersion of the ensemble.

m Unknown parameters are estimated using the CRPS of forecasts and past
observations over a training period (Gebetsberger et al., 2018);

m Ensemble Copula Coupling (ECC) (Schefzik et al., 2013) .
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Ensemble Copula Coupling (ECC)

Distribution of Distribution of
raw forecast post-processed forecast
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Experimental design and verification score metrics

1. Type of data:

m SYNOP observations (all over the world);
m Raw ensemble forecast (ECMWF);

m Raw corrected ensemble (heigh elevation):
Teorr = T + 0.0065 * height elevation;

-> Height elevation: difference between model orography and station elevation;
-> 0.0065: 'Standard atmosphere’ gradient (widely used for height correction);

2. Period:
m October 2020 - February 2023;
m Training period: sliding window of 60 previous days.

3. Scores:
m Bias (ensemble mean - observation);
m Continuous Ranked Probability Score (CRPS);
m Continuous Ranked Probability Skill Score (CRPSS).
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Bias: raw, corrected raw and pp ensemble forecast (2m T)

Bias - 2m T (raw forecast), model run : 2022-06-01--2022-08-31, leackime: 108h, domain: World
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Continuous Ranked Probability Score (CRPS)

m Probabilistic forecast verification to assess quality and performance;
m CRPS measures global performance (Candille et Talagrand, 2005);
CRPS(F, F,) = / (F(z) — Fo)2dx.
R
m F = P[X < z] cumulative distribution function of ensemble;
m [, cumulative distribution function associated with the observation;
m The lower the score, the better the forecast.
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CRPS raw, corrected raw and pp ensemble forecast (2m T)

CRPS-2m T
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Continuous Ranked Probability Skill Score (CRPSS)

m CRPSS is a measure of how good two forecasts are in matching observed
outcomes (Hersbach, H., 2000);

CRPS(F F )

m CRPS(F,F,) - CRPS score of the ensemble forecast;
m CRPS(F, F,) - CRPS score of the reference ensemble forecast.

m Interpretation:

1. CRPSS = 1 the forecast has perfect skill compared to the reference forecast;

2. CRPSS = 0 the forecast has no skill compared to the reference forecst;

3. CRPSS = negative value the forecast is less accurate than the reference
forecast.
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CRPSS pp v.s. raw corrected ensemble forecast (2m T)

CRPSS - 2m T (pp Versus raw corrected forecast), model run : 2022-06-01—-2022-08-31, lead-time: 108n, domain: World
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Conclusion

m Good performance of EMOS over the entire globe;
—> Verification with scores: Bias, CRPS and CRPSS.

m Next steps: Use EMOS as a benchmark to compare against other methods
for post-processing (e.g. generative neural networks).
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Thank you for your attention!
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