

Atmospheric gravity waves and their influence on weather and climate: Challenges and new approaches

U. Achatz, G.S. Völker, Y.-H. Kim, G. Bölöni, J. Muraschko, M. Fruman (all GU Frankfurt), R. Klein (FU Berlin) & ...

Atmospheric Gravity Waves: Impacts & Issues

Rossby-wave and GW breaking force the Brewer-Dobson circulation

- Rossby-wave and GW breaking force the Brewer-Dobson circulation
- **Downward control:** Middle atmosphere influences tropospheric climate (Haynes et al 1991)

- Rossby-wave and **GW breaking** force the **Brewer-Dobson circulation**
- **Downward control:** Middle atmosphere influences tropospheric climate (Haynes et al 1991)
- BDC under climate change: Impact from GWs (Butchard 2014)

Zonal-mean zonal winds (westerlies)

With GW parameterization

Without GW parameterization

Schmidt et al (2006)

50

Quasi-Biennial Oscillation (QBO) of zonal-mean zonal wind over the equator:

Bundesminister für Bildung und Forschung	DFG	GOETHE UNIVERSITÄT FRANKFURT AM MAIN
und Forschung		GOETHE UNIVERSI FRANKFURT AM

Quasi-Biennial Oscillation (QBO) of zonal-mean zonal wind over the equator: Model predictions for QBO under climate change (Schirber et al 2014, Richter et al 2020)

*	Bundesministerium für Bildung und Forschung	DFG	GOETHE UNIVERSITÄ FRANKFURT AM MAI
			FRANKFURT AM MA

Quasi-Biennial Oscillation (QBO) of zonal-mean zonal wind over the equator: Model predictions for QBO under climate change (Schirber et al 2014, Richter et al 2020)

Try and resolve everything?

Bundesministerium für Bildung und Forschung

GOETHE 🐮

FRANKFURT AM MAIN

UNIVE

16. April 2023

Try and resolve everything? GWD 20°N – 80°N (Polichtchouk et al 2022) No convergence at accessible resolutions 10¹ (e.g. Polichtchouk et al 2022) – -9 km ---4.5 km -1 km 1.4 km explicitly simulated convection Veri 2018110100+36h (h3f7) pressure [hPa] 10² -0.40 -0.30 -0.20 -0.10 0.00 GWD [m/s/day]

Atmospheric GWs: Impacts and issues

DFG

GOETHE

Try and resolve everything?

- No convergence at accessible resolutions (e.g. Polichtchouk et al 2022)
- Model hierarchy needed for conceptual understanding (Held 2005)

1.4 km explicitly simulated convection 2018110100+36h (h3f7)

GWD 20°N – 80°N (Polichtchouk et al 2022)

DFG

GW-Mean-Flow Interaction: Theory in a Nutshell

Short-wavelength GWs in the atmosphere related to geometric optics:

- Atmosphere = medium with refractive properties
- GWs modify the medium
- Two-way interaction described using WKB theory

DFG

WKB theory for

- GWs (locally monochromatic or weak amplitude)
- on a slowly varying stratified mean flow u(x, t)

(e.g. Bretherton 1966, Grimshaw 1975, Achatz et al 2017, Achatz 2022):

frequency and wave number connected by dispersion relation

$$\omega = \Omega(\boldsymbol{x}, \boldsymbol{k}, t) = \boldsymbol{k} \cdot \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \pm \sqrt{\frac{N^2(z)k_h^2 + f^2(\phi)k_z^2}{k_h^2 + k_z^2}}$$

$$\overbrace{\hat{\omega} \text{ (intrinsic frequency)}}^{\text{(intrinsic frequency)}}$$

• GW amplitudes connected by polarization relations, e.g. $(\hat{b} = g \ \hat{\theta} / \bar{\theta})$

$$\widehat{\boldsymbol{u}} = -\frac{i}{mN} \frac{N^2 - \widehat{\omega}^2}{\widehat{\omega}^2 - f^2} \left(\boldsymbol{k}_h \widehat{\omega} - if \boldsymbol{e}_z \times \boldsymbol{k}_h \right) \widehat{\boldsymbol{b}}$$
$$\widehat{\boldsymbol{w}} = \frac{i\widehat{\omega}}{N^2} \widehat{\boldsymbol{b}}$$

Prognostic equations for weak-amplitude GWs:

Spectral wave-action linked to spectral energy density via $\mathcal{N}(\mathbf{x}, \mathbf{k}, t) = \mathcal{E}(\mathbf{x}, \mathbf{k}, t)/\widehat{\omega}$

and satisfies

$$(\partial_t + c_g \cdot \nabla_x + \dot{k} \cdot \nabla_k)\mathcal{N} = D + S$$
 $c_g = \nabla_k \Omega$ $\dot{k} = -\nabla_x \Omega$

Bundesministerium für Bildung

und Forschung

DFG

D = GW sources and sinks (e.g. wave breaking)

- S = scattering due to GW-GW interactions or interactions with mesoscale balanced motion
- theory from oceanography (Hasselmann 1966, Eden et al 2019) asumes weak mean flows
- neglected in the atmosphere

If D = S = 0 then \mathcal{N} is conserved along rays (x, k)(t) satisfying $d_t x = c_g \qquad d_t k = \dot{k}$

GW impact on (phase averaged)mean flow, with fluxes from polarization relations:

Horizontal momentum

$$\mathcal{D}_t \boldsymbol{u} = \cdots - \frac{1}{\bar{\rho}} \, \nabla_x \cdot \langle \bar{\rho} \, \boldsymbol{v}' \boldsymbol{u}' \rangle \qquad \langle \bar{\rho} \, \boldsymbol{v}' \boldsymbol{u}' \rangle = \bar{\rho} \int d^3 k \, \widetilde{\boldsymbol{M}}(\boldsymbol{k}) \, \mathcal{N}$$

Bundesministerium für Bildung

und Forschung

DFG

Entropy

$$D_t \theta = \dots - \nabla_x \cdot \langle \boldsymbol{u}' \theta' \rangle \qquad \qquad \langle \boldsymbol{u}' \theta' \rangle = \int d^3 k \, \boldsymbol{\Theta}(\boldsymbol{k}) \, \mathcal{N}$$

More conventional (pseudomomentum) approach is

$$D_t \boldsymbol{u} = \cdots - \frac{1}{\bar{\rho}} \, \nabla_x \cdot \int d^3 k \, \boldsymbol{c}_g \boldsymbol{k}_h \, \mathcal{N} \qquad D_t \theta = \cdots - 0$$

but this can lead to errors (Wei et al 2019)

Non-acceleration theorem (Charney & Drazin 1961, Andrews & McIntyre 1978, Achatz 2022): GWs have no impact on a synoptic-scale mean flow if

- they are steady,
- their spatial distribution is horizontally homogeneous, and
- there are no GW sources and sinks (and no wave-wave interactions)

Numerical Approach: Lagrangian Ray Tracing MS-GWaM

Numerics: MS-GWaM vs conventional GWP

Non-acceleration theorem (Charney & Drazin 1961, Andrews & McIntyre 1978, Achatz 2022): GWs have no impact on a synoptic-scale mean flow if

Bundesministerium für Bildung

und Forschung

DFG

- they are steady,
- their spatial distribution is horizontally homogeneous, and
- there are no GW sources and sinks (and no wave-wave interactions)

Conventional GW parameterizations:

- Steady state (no transience) Equilibrium profiles assumed, i.e. instantaneous propgation from source to model top
- Single column (1D): no horizontal GW propagation, no horizontal variations of GW energy taken into account
- Rely exclusively on GW breaking

MS-GWaM (Multi-Scale Gravity-Wave Model):

All three processes taken into account

Numerics: Conservative Lagrangian Numerics

Without sources and sinks:

$$\left(\partial_t + \boldsymbol{c}_{\boldsymbol{g}} \cdot \nabla_{\boldsymbol{x}} + \dot{\boldsymbol{k}} \cdot \nabla_{\boldsymbol{k}}\right) \mathcal{N} = 0$$

Bundesministerium

für Bildung und Forschung DFG

Phase-space velocity nondivergent $(\nabla_X \cdot c_g + \nabla_k \cdot \dot{k} = 0)$ \Rightarrow flow is volume preserving

Region of nonzero ${\mathcal N}$ approximated by rectangular ray volumes

- Ray volumes move with central ray
- Ray volumes change spatial and wavenumber extent in area-preserving manner

20

Numerics: Conservative Lagrangian Numerics

GW packet in Boussinesq flow:

1D, i.e. GW energy and mean flow horizontally homogeneous

time 000 min

Numerics: MS-GWaM in UA-ICON

MS-GWaM in the

Upper-<u>Atmosphere</u> extension of <u>ICON</u> (DWD/MPI)

 $\Delta x \sim$ 160 km (R2B4), $\Delta z \sim$ 1km, $z_{top} =$ 150km

UA-ICON (Borchert et al 2019)

1D framework

Fits well to the current MPI communicator

Numerics: MS-GWaM in UA-ICON

<u>MS-GWaM</u> in the <u>Upper-Atmosphere</u> extension of <u>ICON</u> (DWD/MPI)

 $\Delta x \sim$ 160 km (R2B4), $\Delta z \sim$ 1km, $z_{top} =$ 150km

UA-ICON (Borchert et al 2019)

1D framework

Fits well to the current MPI communicator

3D framework

Requires new MPI communication style for Lagrangian particles

Implementation 3D

Bundesministerium

für Bildung und Forschung

- Cell-based ray-volume handling
- Handover from cell to cell
- MPI parallelization

DFG

GOETHE

Numerics: MS-GWaM in UA-ICON

Sources:

- GWs from convection (based on Choi et al 2011)
 - using latent heat release
 - small-scale waves from convective cells
 - larger-scale waves from mesoscale convective systems
- Background GW source based on Orr et al (2010)
 - Seasonal dependence
 - In each hemisphere horizontally homogeneous
- Orographic GWs parameterized outside MS-GWaM (Lott and Miller 1997)

Sink:

Wave breaking due to static instability, using saturation approach (Lindzen 1981, Bölöni et al 2016)

10⁻⁵

0

10⁰ 10⁰ 90th perc 90th perc 99th perc 99th perc Probability of occurrence mean mean occurrence Smooth 2.1 4.3/35% 11.8/ 8% 10⁻¹ Smooth 1.7 3.8/46% 13.8/13% 10-Mountainous 3.2 5.4/55% 33.7/26% Mountainous 2.3 4.8/58% 28.2/21% 10⁻² 10⁻² 10^{-3} 10^{-3} 10-4

60

40

Hertzog et al (2012): Vorcore measurements

20

Total momentum flux (mPa)

WRF

40

Total momentum flux (mPa)

60

0

20

Bundesministerium

für Bildung

und Forschung

DFG

WRF

Hertzog et al (2012): Vorcore measurements

10⁰ 10⁰ 90th perc Probability of occurrence 90th 99th perc 99th perc mear perc occurrence mean 2.1 4.3/35% 11.8/8% 10^{-1} Smooth 1.7 3.8/46% 13.8/13% 10-Smooth Mountainous 3.2 33.7/26% Mountainous 2.3 4.8/58% 28.2/21% 10⁻² 10⁻² ≣ 10⁰ 10^{-3} TR 20km TR 40km Probability of occurrence TR 60km 10-4 10⁻¹ TR 80km ST 20km 10⁻⁵ ST 40km ST 60km 20 10⁻² 0 40 ST 80km Total momentum flux (mPa) 10⁻³ 10⁻⁴ 10⁻⁵ 10 20 30 40 50 60 0 Bölöni et al (2021): 65°S – 50°S in Oct Absolute zonal momentum flux (mPa)

Kim et al (2021): 116°E, 3.5°N in May 1998

GW source from convection (Son & Chun 2005, Choi & Chun 2011)

Bundesministerium für Bildung und Forschung

Gini coefficient: Index for unbalance in distribution

Cumulative share of people from lowest to highest incomes

Gini coefficient: Index for unbalance in distribution

Kim et al (2021): Gini coefficient for GWMF

Effects of Horizontal Propagation

Effects of horizontal propagation: Wave-action budget

Spatial wave-action density $\mathcal{A} = \int d^3k \mathcal{N}$ satisfies

$$\partial_t \mathcal{A} = -\nabla_h \cdot (\mathbf{c}_{gh} \mathcal{A}) - \partial_z (c_{gz} \mathcal{A}) + D$$

with e.g. $c_{gh} \mathcal{A} = \int d^3k \ c_{gh} \mathcal{N}$

Time mean

$$0 \approx \frac{\Delta \mathcal{A}}{\Delta t} = -\nabla_h \cdot \langle \boldsymbol{c}_{gh} \, \mathcal{A} \rangle - \partial_z \langle \boldsymbol{c}_{gz} \, \mathcal{A} \rangle + \langle D \rangle$$

Effects of horizontal propagation: Wave-action budget

Spatial wave-action density $\mathcal{A} = \int d^3k \mathcal{N}$ satisfies

$$\partial_t \mathcal{A} = -\nabla_h \cdot (\mathbf{c}_{gh} \mathcal{A}) - \partial_z (c_{gz} \mathcal{A}) + D$$

with e.g.
$$c_{gh} \mathcal{A} = \int d^3k \ c_{gh} \mathcal{N}$$

Time mean

60°N 30°N

0°

30°5 60°S

June $z \approx 40 \text{km}$ (Völker et al 2023, in prep.)

Effects of horizontal propagation: Horizontal distribution GW mom.flux

GW momentum flux November (snapshot) at two altitudes (Völker et al 2023, in prep.)

Effects of horizontal propagation: GW mom.flux & mean winds

June 1994 Southern Hemisphere **GW meridional momentum flux & mean zonal wind** (Völker et al 2023, in prep.)

Effects of horizontal propagation: GWMF intermittency

Kim et al (2023, in prep.)

DFG

GOETHE

Bundesministerium für Bildung

und Forschung

Effects of horizontal propagation: Zonal-mean zonal wind

Völker et al (2023, in prep.)

Effects of horizontal propagation: QBO

Quasi-Biennial Oscillation: zonal-mean zonal wind $5^{\circ}S - 5^{\circ}N$ (Kim et al 2023, in prep.)

Year

Quasi-Biennial Oscillation: zonal-mean zonal wind 5°S – 5°N (Kim et al 2023, in prep.)

Effects of horizontal propagation: QBO

transient 3D

Effects of horizontal propagation: QBO

Quasi-Biennial Oscillation: zonal-mean zonal wind $5^{\circ}S - 5^{\circ}N$ (Kim et al 2023, in prep.)

Effects of horizontal propagation: QBO

Quasi-Biennial Oscillation: zonal-mean zonal wind $5^{\circ}S - 5^{\circ}N$ (Kim et al 2023, in prep.)

Is it affordable?

	UA-ICON / MS-GWaM (3D)
$\Delta x/\text{km}$	160
$\Delta z/km$	0.02 (BL) – 0.7 (ST) – 4.5 (top)
relative increase comp. time (compared to ICON with classic GWP - Orr et al 2010)	10-40

UA-ICON / MS-GWaM is

• more expensive than UA-ICON with classic GW parameterization, but

	UA-ICON / MS-GWaM (3D)	UA-ICON GW resolving
$\Delta x/\mathrm{km}$	160	5
$\Delta z/\mathrm{km}$	0.02 (BL) – 0.7 (ST) – 4.5 (top)	0.02 (BL) – 0.2 (ST) – 0.2 (top)
relative increase comp. time (compared to ICON with classic GWP - Orr et al 2010)	10-40	240000

UA-ICON / MS-GWaM is

- more expensive than UA-ICON with classic GW parameterization, but
- considerably cheaper than a wave-resolving set-up of UA-ICON

Summary & Discussion

- Subgrid-scale processes still present major challenges to the reliability of climate simulations
- Gravity waves (GW) are a corresponding phenomenon
- Both transient dynamics and horizontal propagation not represented in present-day parameterizations
- MS-GWaM in UA-ICON is 1st prognostic GW model to simulate these effects
- Corresponding differences are leading order, e.g.
 - Intermittency
 - Horizontal distributions
 - QBO
- MS-GWaM is more expensive than classic GW parameterizations but much cheaper than wave-resolving simulations
- Even when we will be able to resolve all processes even in climate simulations, conceptional models with a solid theoretical basis will remain essential for our gain of understanding

Literature

Book:

Achatz, U., 2022: Atmospheric Dynamics. Springer, Berlin

Journal Papers:

- Achatz, U., Ribstein, B., Senf, F., and R. Klein, 2017: The interaction between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong stratification. *Quart. J. R. Met. Soc.*, **143**, 342–361
- Bölöni, G., Ribstein, S., Muraschko, J., Sgoff, C., Wei, J., and U. Achatz, 2016: The interaction between atmospheric gravity waves and largescale flows: an efficient description beyond the non-acceleration paradigm. *J. Atmos. Sci.*, **73**, 4833–4852
- Bölöni, G., Kim, Y.-H., Borchert, S., and U. Achatz, 2021: Toward transient subgrid-scale gravity wave representation in atmospheric models. Part I: Propagation model including nondissipative wave-mean-flow interactions. *J. Atmos. Sci.* **78**, 1317-1338
- Kim, Y.-H., G. Bölöni, S. Borchert, H.-Y. Chun, and U. Achatz, 2021: Toward transient subgrid-scale gravity wave representation in atmospheric models. Part II: Wave intermittency simulated with convective sources. J. Atmos. Sci., **78**, 1339–1357
- Muraschko J, Fruman M, Achatz U, Hickel S, Toledo Y. 2015: On the application of WKB theory for the simulation of the weakly nonlinear dynamics of gravity waves. *Quart. J. R. Met. Soc.* **141**, 676–697.
- Wei, J., Bölöni, G., and U. Achatz 2019: Efficient modeling of the interaction of mesoscale gravity waves with unbalanced large-scale flows: Pseudomomentum-flux convergence versus direct approach, *J. Atmos. Sci.*, **76**, 2715–2738
- Wilhelm, J., Akylas, T.A., Bölöni, G., Wei, J., Ribstein, B., Klein, R., and U. Achatz, 2018: The interaction between meso- and sub-mesoscale gravity waves. *J. Atmos. Sci.*, **75**, 2257-2280

MS-GWaves: https://ms-gwaves.iau.uni-frankfurt.de/