Math 3A, Section B, Spring 1997

Marcel Oliver

Final Exam

1. Solve the system of linear equations

$$\begin{pmatrix} -1 & -4 & -4 & -9 \\ -2 & -8 & 8 & 30 \\ -3 & -12 & -1 & 6 \\ -4 & -16 & -2 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 9 \\ -14 \\ 5 \\ 8 \end{pmatrix}.$$

Use the method taught in class. Check your answer (required!). (15)

2. Let $V = P_3$, the vector space of polynomials of degree less or equal to 3. Find a basis for V containing the vectors

$$v_1 = 1 - 2x,$$

 $v_2 = 1 + x + x^2 + x^3,$
 $v_3 = 1 - x^2 - x^3.$

(10)

3. (a) Diagonalize the matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 3 \end{pmatrix}.$$

I.e., find the eigenvalues λ_i of A, an invertible matrix C, and a diagonal matrix D such that $D = C^{-1}AC$.

(b) Find A¹⁰.

(10+5)

4. (a) Find an orthonormal basis for

$$W = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix} \right\}.$$

- (b) Find the projection of $v = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ onto W. (5+5)
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be defined by

$$T(x) = \begin{pmatrix} x_1 \\ x_1 + x_2 \\ x_1 + 2x_2 \\ x_1 + 3x_2 \end{pmatrix}.$$

Find the matrix $T_{B,E}$ which represents T when \mathbb{R}^2 is endowed with the basis

$$B = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}$$

and \mathbb{R}^4 is endowed with the standard basis $E = \{e_1, e_2, e_3, e_4\}$. (10)

- 6. (a) Is the set of all matrices for which the sum of the diagonal elements is 0, endowed with the usual addition and scalar multiplication, a vector space? Explain.
 - (b) Is the set of all matrices for which the sum of the diagonal elements is 1, endowed with the usual addition and scalar multiplication, a vector space? Explain why this is different from the previous case.

$$(5+5)$$

- 7. A matrix $A \in M(n \times n)$ is called *nilpotent* if there exists a positive integer k such that $A^k = 0$. Prove that a nilpotent matrix is not invertible. (5)
- 8. Let V be the vector space of continuous functions on the interval $[0,2\pi]$. Recall from Calculus that the mean (or average) of a

function is defined

$$M(f) = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx$$

for every $f \in V$.

- (a) Prove that M is a linear transformation on V.
- (b) Let W be a subspace of V with basis

$$B = \{1, \sin x, \cos x, \sin 2x, \cos 2x\}$$

and consider M restricted to W. Then

Fill in the blanks and explain *briefly* how you got your answer.

(c) Describe ker M as concretely as you can.

$$(5+5+5)$$

9. Let $A \in M(n \times n)$ satisfy the equation

$$AA^{\mathsf{T}} = I$$
.

(Such a matrix is called *orthogonal*.)

- (a) Is A invertible? Explain.
- (b) Prove that if λ is an eigenvalue of A, then either $\lambda=1$ or $\lambda=-1$.

Hint: Compare the eigenvalues of A with those of A^{-1} .

(5+5)