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Abstract

Over the last 15 years, an enormous and increasingly well integrated
collection of Python-based tools for Scientific Computing has emerged—
the SciPy Stack or short SciPy [7]. This document intends to provide a
quick reference guide and concise introduction to the core components of
the stack. It is aimed at beginning and intermediate SciPy users and does
not attempt to be a comprehensive reference manual.

1 Why Python for Scientific Computing?

Python is a full-fledged general-purpose programming language with a simple
and clean syntax. It is equally well suited for expressing procedural and object
oriented programming concepts, has a powerful standard library, numerous spe-
cial purpose extension modules, and interfaces well with external code. Python
is interpreted (strictly speaking, compiled to byte-code), ideal for interactive
exploration.

As an interpreted language, Pythion cannot execute core numerical algo-
rithms at machine speed. This is where NumPy comes in: since most large-scale
computational problems can be formulated in terms of vector and matrix oper-
ations, these basic building blocks are provided with highly optimized compiled
C or Fortran code and made available from within Python as array objects.
Thus, any algorithm that can be formulated in terms of intrinsic operations on
arrays will run at near-native speed when operating on large data sets. For those
special cases where this is insufficient, Python offers mechanisms for including
compiled time-critical code sections, ranging from in-lining a few lines of C to
wrapping entire external libraries into Python.
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On top of NumPy, a collection of several large extension libraries creates
a very comprehensive, powerful environment for Scientific Computing. SciPy
extends the basic array operations by providing higher-level tools which cover
statistics, optimization, special functions, ODE solvers, advanced linear alge-
bra, and more. Matplotlib is a plotting library which can create beautiful and
very flexible 2D graphics as well as basic 3D plots. IPython is indispensable as
an interactive shell and provides a browser-based notebook interface. Further
libraries include pandas for data analysis, Mayavi for powerful 3D visualization,
and SymPy for symbolic mathematics; many more specialized scientific libraries
and applications are readily available on the net.

At the same time, the whole universe of general-purpose Python extensions
is available to the SciPy developer. In particular, xlrd and xlwr allow reading
and writing of Excel files and the csv module allows robust handling of CSV
data files. There are several comprehensive GUI toolkits, libraries for network
protocols, database access, and other tools which help building complex stand-
alone applications.

This document focuses on the use of NumPy, the SciPy library, matplotlib,
and IPython—together referred to as the SciPy Stack or simply SciPy [7]—for
rapid prototyping of vectorizable numerical code. In this capacity, SciPy com-
petes with Matlab, a proprietary development environment which has dominated
Scientific Computing for many years but it is increasingly challenged by SciPy
for a number of reasons:

• Python is an appealing programming language. It is conceptually clean,
powerful, and scales well from interactive experimentation all the way to
building large code bases. The Matlab language, on the other hand, was
optimized for the former at the expense of the latter.

• SciPy is free software. You can run it on any machine, at any time, for
any purpose. And, in principle, the code is fully transparent down to
machine level, which is how science should be done. Matlab, on the other
hand, must be licensed. Licenses typically come with number-of-CPU
restrictions, site licenses require network connection to the license server,
and there are different conditions for academic and for commercial use.
Moreover, its numerical core is not open to public scrutiny. (There is
also Octave, a free clone of Matlab. Unfortunately, it is strictly inferior to
Matlab while sharing its conceptual disadvantages.)

• Numerical Python array objects work cleanly in any dimension. Pow-
erful slicing and “broadcasting” constructs make multi-dimensional array
operations very easy. Matlab, on the other hand, is highly optimized for
the common one- and two-dimensional case, but the general case is less
idiomatic.

• matplotlib produces beautiful production-quality graphics. Labels can be
transparently typeset in TEX, matching the rest of the document. In addi-
tion, there is great flexibility, e.g., for non-standard coordinate axes, non-
numerical graphical elements, inlays, and customized appearance. Matlab
graphics are powerful and well-integrated into the core system, but rather
less flexible and aesthetically appealing.
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So what are the drawbacks of SciPy? In practice, very few. Documentation
is scattered and less coherent than Matlab’s. When working offline, the help
system is not always sufficient, especially if you do not know the precise name
of a function you are looking for. This is compensated, to some extend, by lots
of high quality resources on the internet. And this document tries to address
some of the documentation gaps for newcomers to SciPy.

For the simplest use cases, working in Python exacts a small tribute in the
form of increased complexity (name space separation, call by reference seman-
tics). However, in relation to the associated increase in expressive power, it is
a very small price to pay and handled by Python in a minimally intrusive way.

There are other considerations, both in favor of and against Python which
can easily be found on the net. They are are mostly tied to specific domains
of application—the above is what matters most for general purpose Scientific
Computing.

2 First Steps

2.1 Software installation

Unless you have legacy code, install the stack based on Python 3. Python 2.7
is increasingly unmaintained and should not be used. On Linux, install spyder
which will pull in all the software you need. (yum install python3-spyder on
Redhat-based and apt-get install python3-spyder on Debian-based distri-
butions.)

On Windows and MacOS, install the Anaconda Python distribution [4] (also
available for Linux, but using distribution packages is often better).

2.2 IPython and Spyder

The Ipython shell The Ipython shell provides a powerful command line in-
terface to the SciPy Stack. We always invoke it as

ipython3 --pylab

The command line option --pylab loads numpy and matplotlib into the global
name space. (In general, python modules must be loaded explicitly.) It also
modifies the threading model so that the shell does not block on plotting com-
mands.

When writing scripts, you will have to load the modules you use explicitly.
More on this in Section 3.1.

The Spyder interactive development environment Spyder integrates a
text editor, help browser, and interactive Ipython shell in one application. Make
sure that the shell starts up with the --pylab option: Go to Tools–Preferences–
Ipython console–Graphics and check the boxes “Activate support” and “Auto-
matically load Pylab and NumPy modules”. You may also want to set “Back-
end” to “Automatic” to enable graphics in a separate window for zooming and
panning.
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2.3 Help!

• help(name) explains the variable or function name.

• help() enters a text-based help browser, mainly useful for help on the
Python language core.

• help(pylab) displays help information on Matlab-style plotting commands.

• quickref displays a summary of Ipython shell features.

2.4 Input conventions

• The default is one command per line without an explicit line termination
character, but you may use

• ; to separate several commands within a line,

• \ to continue an expression into the next line; may be omitted if the
continuation is unambiguous.

• Comments are preceded by #.

• Python is case-sensitive.

• Code blocks are grouped by level of indentation! See Section 5 on control
structures below.

Examples:

In [1]: ’ab’ \

...: ’cd’ # Explicit line continuation

Out[1]: ’abcd’

In [2]: min(1,

...: 0) # Implicit line continuation

Out[2]: 0

2.5 Variables and simple expressions

• varname = expression assigns the result of expression to varname.

• Some standard mathematical operators and functions: +, -, *, /, **, sin,
cos, exp, arccos, abs, etc.

• Comparison operators are <, <=, >, >=, ==, and !=.

• Boolean logical operators and, or, not.

• The operators & and | represent bit-wise AND and OR, respectively!
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Examples:

In [1]: 10**2 - 1e2

Out[1]: 0.0

In [2]: sqrt(-1)

Out[2]: nan

In [3]: sqrt(-1+0j)

Out[3]: 1j

Note: The last example shows that you have to force the use of complex num-
bers. This behavior is different from Matlab.

Warning: Python assignments are by reference! All assignment in
Python is by reference, not by value. When working with immutable objects such
as numerical constants, Python automatically forces a copy, so the assignment-
by-reference semantics is somewhat hidden. However, when working with mu-
table objects such as an array representing a vector or a matrix, one must force
a copy when required! This behavior is a source of hard-to-discover bugs and
will be discussed in detail in Section 8.

2.6 Debugging

Some commands useful for debugging:

• a? displays additional information on the object a, including documenta-
tion on the object class, if available.

• page displays the last output, page a displays the contents of a through
a pager. Useful for investigating big arrays. Note: By default, python
prints only the corners of arrays of size greater than 1000. To increase
this limit, use, e.g.,

set_printoptions(threshold=1000000)

• whos shows all user-defined variables and functions (see Section 5.3).

• _, __, ___ refer to the previous, next previous, and next next previous
output; Out[i] and In[i] refer to output cell i resp. input cell i.

• del a unbinds the variable a.

• reset unbinds all user-defined variables in the shell.

Note: the commands above (except for del) are so-called Ipython magic func-
tions. Should you happen to overwrite them with python function definitions,
you still access them by prepending %.

2.7 Timing

To record the execution time of single code snippets or whole programs, several
options are available. For most purposes, timing from the Iphython shell suffices,
but you can also put timing instrumentation into any program code.

6



Timing code from the Ipython shell

In [1]: %timeit sum(arange(100))

100000 loops, best of 3: 10.8 us per loop

In [2]: %timeit sum(arange(10000))

10000 loops, best of 3: 33.1 us per loop

Simple CPU-time stamp

import time

t = time.process_time()

# Now do some big computation

print "Elapsed CPU Time:", time.process_time() - t

Note: use time.monotonic() instead of time.process_time() if you need wall-
clock time.

Timing short code snippets If you need a thorough analysis of small time-
critical sections of code, use the timeit module:

import timeit

def f(x):

# do something which needs to be timed

t = timeit.Timer (’f(3.0)’, ’from __main__ import f’)

print ("1000 Evaluations take", t.timeit(number=1000), "s")

Note: The timeit module runs f in a controlled environment, so you have to set
up the environment with the import statement. If you need to pass variables as
arguments, they need to be imported, too.

3 Scripts

Except for very simple exploratory code, the normal workflow involves writing
program code in separate text files and running them from the Ipython shell. We
only discuss the case where the code is so simple as to be reasonably organized
in a single file. You can easily modularize larger projects; consult the Python
language documentation for details.

Program files should, but need not, carry the suffix .py. It is common
practice to start the first line with

#! /usr/bin/env python3

This allows direct execution of the file on Unix-like operating; on other operating
systems, it is simply ignored.

3.1 Module Import

When working with script files, you are responsible for module loading. On
the one hand, module import requires some explicit attention (“where is my
function?!”). On the other hand, module namespaces provide sanity to complex
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projects and should be considered one of the strong points of working with
Python.

Since Python makes it is possible to import the same function or module in
different ways, it is important to standardize on some convention. We suggest
the following:

Short numerical code

from pylab import *

This import statement sets up a large set of basic, often Matlab-like functions
in the current namespace. It is the script file equivalent of starting the Ipython
shell with the pylab command line option as described in Section 2.2.

If a more specialized function is required, we import it by its explicit name
into the current namespace. E.g., we write

from scipy.linalg import lu

to make available the function scipy.linalg.lu as lu. This convention keeps
the program code very close what you would do in the interactive shell after
invoking ipython --pylab, and it also replicates Matlab to some extent.

All examples in this document use this convention!

Larger projects When working on large projects, library modules, or pro-
grams where only a small fraction of the code is numerical, we recommend using
full module path names, respectively their commonly used abbreviations. E.g.,

import numpy as np

import matplotlib.pyplot as plt

import scipy.linalg

Then the common functions arange, figure, solve, all described further below,
must be called as np.arange, plt.figure, and scipy.linalg.solve, respec-
tively.

4 Arrays

array objects representing vectors, matrices, and higher-dimensional tensors
are the most important building blocks for writing efficient numerical code in
Python. (numpy has an alternative matrix data type more similar to the Matlab
matrix model. However, its use is discouraged [6] and will not be discussed here.)

4.1 Vectors

• Define a vector v = (1, 2, 3):

v = array([1,2,3])

• Partition the interval [a, b] into n equidistant points:

linspace(a,b,n)

• Partition the interval [a, b) into points with increment inc:

arange([a,]b[,inc]) or r_[a:b:inc]
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• The same as an explicit column vector (n× 1 matrix):

c_[a:b:inc]

• r_[u,v] will concatenate the row vectors (one-dimensional arrays) u and
v; c_[u,v] will create a matrix with columns u and v.

• Arrays have a fixed data type. You can specify a data type with the dtype
argument upon array creation. Common data types are float, complex,
int, long (64-bit integer), bool.

Examples:

In [1]: linspace(0,1,5)

Out[1]: array([ 0. , 0.25, 0.5 , 0.75, 1. ])

In [2]: arange(0,1,0.25)

Out[2]: array([ 0. , 0.25, 0.5 , 0.75])

In [3]: arange(5)

Out[3]: array([0, 1, 2, 3, 4])

In [4]: arange(1,6)

Out[4]: array([1, 2, 3, 4, 5])

In [5]: arange(1,6,dtype=float)

Out[5]: array([ 1., 2., 3., 4., 5.])

Note that arange follows the general Python convention of excluding the
end point. The advantage of this convention is that the vector arange(a,b)

has b− a components when this difference is integer.

4.2 Matrices

A matrix A =

(
1 2
3 4

)
is generated as follows.

In [1]: A = array([[1,2],[3,4]]); A

Out[1]:

array([[1, 2],

[3, 4]])

Matrices can assembled from submatrices:

In [2]: b = c_[5:7]; M = c_[A,b]; M

Out[2]:

array([[1, 2, 5],

[3, 4, 6]])

In [3]: M = r_[A,b[newaxis,:]]; M

Out[3]:

array([[1, 2],

[3, 4],

[5, 6]])
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Special Matrices There are functions to create frequently used m × n ma-
trices. If m = n, only one argument is necessary.

• eye(m,n) produces a matrix with ones on the main diagonal and zeros
elsewhere. When m = n, the identity matrix is generated.

• rand(m,n) generates a random matrix whose entries are uniformly dis-
tributed in the interval (0, 1).

• zeros((m,n)) generates the zero matrix of dimension m× n.

• ones((m,n)) generates an m× n matrix where all entries are 1.

• diag(A) creates a vector containing the diagonal elements ajj of the ma-
trix A.

• diag(v) generates a matrix with the elements from the vector v on the
diagonal.

• diag(v,k) generates a matrix with the elements from the vector v on the
k-th diagonal.

4.3 Basic matrix arithmetic

• The usual operators +, -, and *, etc., act element-wise.

• A.T denotes the transpose of A.

• A.conj().T conjugates and transposes A.

• dot(A,B) computes the matrix product AB of two matrices A and B.

• A@v or dot(A,v) computes the product of a matrix A with a vector v.

Examples:

In [1]: A = array([[1,2],[3,4]]); A-A.T

Out[1]:

array([[ 0, -1],

[ 1, 0]])

In [2]: A*A.T # Element-wise product

Out[2]:

array([[ 1, 6],

[ 6, 16]])

In [3]: A@A.T # Matrix product

Out[3]:

array([[ 5, 11],

[11, 25]])
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Vector products If the column vectors v, w ∈ Rn are represented by one-
dimensional arrays v and w, then

• v@w or dot(v,w) computes the inner product vTw;

• c_[v]@r_[[w]] or outer(v,w) computes the outer product vwT .

Sums and products over array elements

• sum(A) computes the sum of all elements of A.

• sum(A,axis=i) computes the sum along axis i of the array.

• cumsum, prod, and cumprod follow the same pattern for cumulative sums
(an array with all stages of intermediate summation), products, and cu-
mulative products.

• trace(A) or A.trace() yields the trace of a matrix A.

Note that the first axis (row indices for matrices) corresponds to axis=0, the
second (column indices for matrices) corresponds to axis=1, etc.

Examples

In [1]: A = array([[1,2],[3,4]]); sum(A)

Out[1]: 10

In [2]: sum(A,axis=0)

Out[2]: array([4, 6])

In [3]: sum(A,axis=1)

Out[3]: array([3, 7])

In [4]: cumprod(A)

Out[4]: array([ 1, 2, 6, 24])

You can compute with Booleans where False ≡ 0 and True ≡ 1. So the
following expression counts the number of nonzero elements of a matrix:

In [4]: A = eye(3); sum(A!=0)

Out[4]: 3

4.4 More elementary matrix operations

• amax(A) or A.max() finds the maximum value in the array A. You can add
an axis argument as for sum.

• argmax(A) or A.argmax() returns the index relative to the flattened array
A of only the first element which takes the maximum value over the array.
Works also along a specified axis.

• fmax(A,B) element-wise max functions for two arrays A and B.

• There is a corresponding set of min-functions.
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• allclose(A,B) yields true if all elements of A and B agree up to a small
tolerance.

• around(A,decimals=n) or A.round(n) rounds the elements of A to n

decimal places.

Examples

In [1]: A = array([[1,2],[3,4]]); amax(A); argmax(A)

Out[1]: 4

Out[1]: 3

In [2]: A.flatten()[argmax(A)]

Out[2]: 4

In [3]: B = 3*eye(2); argmin(B,axis=1)

Out[3]: array([1, 0])

In [4]: fmax(A,B)

Out[4]:

array([[ 3., 2.],

[ 3., 4.]])

4.5 Indexing and slicing

Python indexing starts from zero! This is often different from traditional math-
ematical notation, but has advantages [1].

Examples

In [1]: A = array([[1,2],[3,4]]); A[0,0]

Out[1]: 1

In [2]: A[1]

Out[2]: array([3, 4])

In [3]: A[:,1]

Out[3]: array([2, 4])

Ranges

• a:b specifies the index range a ≤ i < b. Negative values count from the
end of the array.

• a:b:s is the same in steps of s. When s is negative, the order is reversed.

• delete(A,i,axis) deletes the subarray of index i with respect to axis
axis.
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Examples

In [1]: a = arange(5); a[2:]; a[-3:]; a[::-1]

Out[1]: array([2, 3, 4])

Out[1]: array([2, 3, 4])

Out[1]: array([4, 3, 2, 1, 0])

In [2]: A = eye(4, dtype=int); A[1:3,:3] = -8; A

Out[2]:

array([[ 1, 0, 0, 0],

[-8, -8, -8, 0],

[-8, -8, -8, 0],

[ 0, 0, 0, 1]])

In [3]: A[1:3,1:3] = eye(2, dtype=int)[::-1]; A

Out[3]:

array([[ 1, 0, 0, 0],

[-8, 0, 1, 0],

[-8, 1, 0, 0],

[ 0, 0, 0, 1]])

4.6 Array size and shape

• A.shape returns a python tuple containing the number of elements in each
dimension of the array A.

• A.size returns the total number of elements of A.

• len(A) returns the number of elements of the leftmost index of A.

Examples

In [1]: A=eye(3); A.shape

Out[1]: (3, 3)

In [2]: A.size

Out[2]: 9

In [3]: len(A)

Out[3]: 3

4.7 Reshaping arrays

• A.reshape(i,j,...) transforms A into an array of size (i,j,...). The
total size must remain unchanged.

• A.flatten() flattens A into a 1-dimensional array.

Examples
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In [1]: A = arange(12); B = A.reshape(2,3,2); B

Out[1]:

array([[[ 0, 1],

[ 2, 3],

[ 4, 5]],

[[ 6, 7],

[ 8, 9],

[10, 11]]])

In [2]: B.flatten()

Out[2]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

4.8 Index arrays

A powerful way to write short, elegant code is to use arrays of integers or
Booleans to index other arrays. Though our examples only scratch the surface,
many tricky index problems can be solved this way!

• v[i], where i is a one-dimensional integer array, yields an array of length
len(i) containing elements vi1 , vi2 , . . . .

• More generally, A[i,j,...] gives an array of shape i.shape which must
coincide with j.shape, etc., with elements picked from A according to the
indices at each position of i, j, etc.

• A[b], where b is a Boolean array of the same shape as A selects those
components of A, for which b is true.

Examples Select every second element from an array a:

In [1]: a = 2**arange(8); a

Out[1]: array([ 1, 2, 4, 8, 16, 32, 64, 128])

In [2]: i = 2*arange(4); i

Out[2]: array([0, 2, 4, 6])

In [3]: a[i]

Out[3]: array([ 1, 4, 16, 64])

Note: this particular example is equivalent to a[::2], but the index array
construct is much more general.

In two dimensions, index arrays work as follows. As an example, we extract
the main anti-diagonal of the matrix A:

In [4]: A = arange(16).reshape(4,4); A

Out[4]:

array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],

[ 8, 9, 10, 11],

[12, 13, 14, 15]])
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In [5]: i=arange(4); j=i[::-1]; A[i,j]

Out[5]: array([ 3, 6, 9, 12])

Set all zero elements of A to 2:

In [6]: A = eye(3, dtype=int); A[A==0] = 2; A

Out[6]:

array([[1, 2, 2],

[2, 1, 2],

[2, 2, 1]])

4.9 Broadcasting and generalized outer products

When performing element-wise operations on a pair of arrays with a different
number of axes, Numpy will try to “broadcast” the smaller array over the addi-
tional axis or axes of the larger array provided this can be done in a compatible
way. (Otherwise, an error message is raised.)

Example

In [1]: A=ones((3,3)); b=arange(3); A*b

Out[1]:

array([[ 0., 1., 2.],

[ 0., 1., 2.],

[ 0., 1., 2.]])

The detailed general rules can be found in the Numpy documentation [5]. How-
ever, you can also explicitly control how broadcasting is done by inserting the
keyword newaxis into the index range specifier to indicate the axis over which
this array shall be broadcast. The above example is equivalent to the following.

In [2]: A*b[newaxis,:]

Out[2]:

array([[ 0., 1., 2.],

[ 0., 1., 2.],

[ 0., 1., 2.]])

In the same way, we can have b be broadcast over columns rather than rows:

In [3]: A*b[:,newaxis]

Out[3]:

array([[ 0., 0., 0.],

[ 1., 1., 1.],

[ 2., 2., 2.]])

Finally, a more complicated example using explicit broadcasting illustrates how
to compute general outer products for tensors of any shape:

In [4]: A=array([[1,2],[3,5]]); b=array([7,11]); \

...: A[:,newaxis,:]*b[newaxis,:,newaxis]

Out[4]:

array([[[ 7, 14],

[11, 22]],

[[21, 35],

[33, 55]]])
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4.10 Probability and statistics

• mean(a), var(a), and std(a) compute mean, variance, and standard de-
viation of all array elements of the array a. To compute them only along
a specified axis, add an axis-argument as described in Section 4.3.

• random(shape) produces an array of random numbers drawn from a uni-
form distribution on the interval [0, 1) with specified shape.

• normal(m,s,shape) produces an array of random numbers drawn from a
normal distribution with mean m and standard deviation s with specified
shape.

• Similarly, you can draw from a binomial, poisson, or exponential dis-
tribution. Consult the help system for information on parameters.

4.11 Numerical linear algebra

The following numerical linear algebra functions are loaded into the global
namespace when you import pylab.

• solve(A,b) yields the solution to the linear system Ax = b.

• inv(A) computes the inverse of A.

• d,V = eig(A) computes a vector d containing the eigenvalues of A and a
matrix V containing the corresponding eigenvectors such that AV = V D
where D = diag d.

• U,s,Vh = svd(A) computes the singular value decomposition of A. Re-
turned are the matrix of left singular vectors U , the vector of correspond-
ing singular values, and the Hermitian complement of the right singular
vectors V H = Vh. Then A = USV H where S = diag s.

• Q,R = qr(A) computes the QR-decomposition QR = A.

• norm(A) computes the Frobenius norm of an array A of any dimension;
if A is a matrix, norm(A,p) computes the operator p-norm, p can only
take the values 1, 2 or inf; if v is a one-dimensional array, norm(v,p)
computes the vector p-norm.

• cond(A) computes the condition number of A with respect to the 2-norm.

Examples

In [1]: A = array([[0,1],[-2,0]]); eig(A)

Out[1]:

(array([ 0.+1.41421356j, 0.-1.41421356j]),

array([[ 0.00000000-0.57735027j, 0.00000000+0.57735027j],

[ 0.81649658+0.j , 0.81649658+0.j ]]))

In [2]: d,V = eig(A); allclose(dot(A,V), dot(V,diag(d)))

Out[2]: True
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In [3]: svd(A)

Out[3]:

(array([[ 0., 1.],

[ 1., 0.]]),

array([ 2., 1.]),

array([[-1., -0.],

[ 0., 1.]]))

In [4]: U,s,Vh = svd(A); allclose(dot(dot(U,diag(s)),Vh),A)

Out[4]: True

The scipy.linalg module contains many more specialized numerical linear
algebra routines such as LU and Cholesky factorization, solvers for linear sys-
tems with band-matrix structure, matrix exponentials, the conjugate gradient
method, and many more. To get an overview, type

In [1]: from scipy import linalg

In [2]: help linalg

Singular linear systems Contrary to Matlab behavior, solve(A,b) exits
with an error message when the matrix A is singular. If you need a least-square
or least-norm solution, you have to use lstsq from scipy.linalg. This is
illustrated in the following:

In [1]: A = array([[1,0],[0,0]]); b=array([1,0]); c=b[::-1]

In [2]: x = solve(A,b)

LinAlgError: Singular matrix

In [3]: from scipy.linalg import lstsq

In [4]: x, res, rk, s = lstsq(A,b); x

Out[4]: array([ 1., 0.])

This example is an underdetermined system; any vector x = (1, α) would solve
the system. lstsq returns the least-norm solution as well as the residual res,
the effective rank of the matrix rk, and the vector of singular values s. When
the system is inconsistent, the least-square solution is returned:

In [5]: x, res, rk, s = lstsq(A,c); x

Out[5]: array([ 0., 0.])

5 Control structures

5.1 Branching

Conditional branching works as follows:

if i<2:

print("i is less than 2")
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elif i>=4:

print("i is greater or equal to 4")

else:

print("i is greater or equal to 2 and less than 4")

5.2 Loops

A simple “for-loop” in Python works as follows, with the usual conventions for
the range specifier.

In [1]: for i in range(3,5):

...: print(i)

3

4

Iterators More generally, Python loops can iterate over many list-like objects
such as arrays:

In [1]: a = exp(0.5j*pi*arange(4))

In [2]: for x in a:

...: print(x)

(1+0j)

(6.12303176911e-17+1j)

(-1+1.22460635382e-16j)

(-1.83690953073e-16-1j)

While-loops Here is an example of a while-loop:

x = 5

while x > 0:

print(x)

x -= 1

More flow control

• Use break to leave the innermost loop (or, more generally, the innermost
scope);

• Use continue to go to the next iteration of the loop without evaluating
the remainder of its body;

• A loop can have an else:-clause which is run after a loop terminates
regularly, but will not be run if the loop is left via a break-statement.

5.3 Functions

Functions are defined with the keyword def.
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Example

In [1]: def square(x):

...: return x*x

In [2]: square(5)

Out[2]: 25

Note: If a function does not take any arguments, its definition must still end with
parentheses. Functions do not need to return anything; the return keyword is
optional. Variables used within a function are local—changing them locally does
not change a possibly globally defined variable of the same name.

Warning: References are local, not the data! If you pass a reference to
a mutable object as a function argument, you can still modify its data from
within the function even though you cannot modify the reference pointer itself.
However, immutable objects cannot be modified this way! This subtle difference
is explained more fully in Section 8.

Universal functions Many standard mathematical functions such as sin or
abs are so-called universal functions which operate on arrays element-wise. A
newly defined function f (unless it consists of nothing more than an arithmetic
expression consisting only of universal functions) will not do this, but it can be
“vectorized” via

f = vectorize(f)

so that it starts acting on arrays element-wise. Note that this construct is for
convenience, not for performance.

Default and named arguments Arguments can be given a default value.
The values of such optional arguments can be specified either via an ordered
argument list or as an explicitly named keyword argument:

In [1]: def root(x,q=2.0):

...: return x**(1.0/q)

In [2]: root(2), root(2,3), root(2,q=3)

Out[2]: (1.4142135623730951, 1.2599210498948732, 1.2599210498948732)

Global variables Use global name to declare name as a global variable.

In [1]: def f():

...: global a

...: a = pi

In [2]: a=1; f(); a

Out[2]: 3.141592653589793
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Nested functions: In Python, it is possible to nest function definitions. Fur-
ther, references to functions can be passed as references—this works just like
the reference passing for data objects.

The following example is called a closure where the function defined in the
inner scope has access to a local variable from the enclosing scope, but the inner
function is executed only after the execution of the enclosing scope has finished.

In [1]: def outer(xo):

...: def inner(xi):

...: return xo+xi

...: return inner

In [2]: f = outer(5)

In [3]: f(3)

Out[3]: 8

6 Graphics

6.1 Basic 2D graphs

• plot(y) plots the values of the vector y with the array index as x-
coordinates.

• plot(x,y) plots a polygonal line between points whose x-coordinates are
supplied in the vector x and whose y-coordinates are supplied in the vector
y.

• plot(x,y,’g:’) does the same with a green dotted line. For a full list of
format strings, consult help(plot).

• semilogx plots with logarithmic scaling on the x-axis, semilogy has log-
arithmic scaling on the y-axis, and loglog on both axes.

• xlim(xmin,xmax) sets limits xmin and xmax for the x-axis; use ylim to
set limits for the y-axis.

6.2 Labels, legends, and annotation

• xlabel(’x’) and ylabel(’y’) set the labels on the x and y-axis, respec-
tively;

• title(’title’) sets a title for the whole plot;

• legend((’first graph’,’second graph’),loc=’lower right’) inserts
a legend in the lower right corner of the plot with given labels for the first
two graphs. For full information on location strings and other options,
consult help(legend);

• annotate(’string’,(x,y)) places an annotation string at coordinate lo-
cation (x,y).
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It is possible to use TEX-style mathematical notation: enclose mathematical ex-
pressions with $-signs. Important: since TEX-commands and special characters
are prefixed by a backslash, which is usually interpreted by Python as a string
escape, use “raw strings” for all TEX-containing strings, e.g.,

title(r’$f(\theta) = \sin(\theta)$’)

6.3 Figure handling

• figure() starts a new plot. (Ipython will open the first figure for you,
but subsequent plots will go into the same coordinate axis, so when writ-
ing scripts, it is good practice to always start out with the figure()-
command.)

• show() displays all figures generated so far. (Ipython will do this auto-
matically for you, but script files will work independently only if you close
your plotting code with an explicit show()-command.)

• subplot(325) creates a division of the figure into 3 rows and 2 columns
of subplots, and sets up the the 5th plot (counting from the top left) for
current plotting.

• savefig(’filename.pdf’) saves your current figure in PDF format.

6.4 3D Plots

The Matplotlib plotting package includes simple 3D graphics (for more sophis-
ticated 3D modeling, Mayavi goes much beyond what Matplotlib can do) which
has to be imported explicitly via

from mpl_toolkits.mplot3d import Axes3D

To start a 3D plot, or more generally, a subplot, write

ax = subplot(111, projection=’3d’)

Then use

• ax.plot_surface for a surface plot,

• ax.plot for a parametric curve,

• ax.scatter for a scatter plot.

Consult the documentation for arguments; a simple function plotting example
is given in Section 9.2 below.

7 Input and output

7.1 Console I/O

• print(’string’) or print(a, b, c) to print a line of console output.
A new line is started automatically, and print inserts one space between
comma-separated arguments.

• input(’Prompt:’) accepts a string of data from the console (ended with
a newline) and returns the string.
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7.2 Fancy formatting

Python has a powerful format string syntax. A format string is of the form
{name:format} where name is either a named argument or argument position
number and format is the format specifier. Useful format specifiers are

3d Integer of 3 characters width
+4d Integer width 4, print sign whether number is positive or negative
.6e Scientific notation, 6 decimal places
8.3f Fixed point number of total width 8 and 3 decimal places
8.3g Choose best format for total width 8 and 3 significant digits

Examples

In [1]: ’|{0:+4d}|{1:4d}|{n:8d}|’.format(22,33,n=-44)

Out[1]: ’| +22| 33| -44|’

In [2]: ’|{pi:10.3e}|{e:10.3f}|{r:10.3g}|’.format(r=sqrt(2),**locals())

Out[2]: ’| 3.142e+00| 2.718| 1.41|’

7.3 Plain text files

Reading To open a plain text file for reading, issue

f = open(’test.txt’, ’r’)

To read the file contents, one often iterates over its lines as follows:

for line in f:

print(line)

Files are automatically closed when the file object goes out of scope, or can be
explicitly closed by issuing f.close().

Writing To open a plain text file for writing, issue

f = open(’test.txt’, ’w’)

This will overwrite an already existing file! If you need to append to a file, use
’a’ as the mode string.

f.write(’This is line ’ + str(1) + ’\n’)

writes the line This is line 1. Note that you have to insert explicit line
termination characters ’\n’ to terminate a line. write accepts only strings, so
you have explicitly convert other objects to strings using str. Note further that
Python has an internal I/O buffer, so if you want a guaranteed update of the
data on the file system, you must issue

f.flush()

This is often useful when writing log files during long-running computations
which are to be monitored via Unix tail or similar utilities. Explicitly closing
the file also flushes the I/O buffer.
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7.4 Saving numpy arrays as text files

• savetxt(’mydata.txt’, a) saves the one or two-dimensional array a into
the file named mydata.txt.

• a=loadtxt(’mydata.txt’) loads the file mydata.txt containing plain
text array data.

7.5 Saving numpy arrays as .npz files

When you wish to save array data which only needs to be readable by other
SciPy instances, it is often efficient and convenient to save them in Numpy’s own
compressed data format. If you need to write out more general Python objects,
you should use Python’s pickle module.

Writing example

from numpy import savez

savez(’mydata.npz’, A=eye(2), b=arange(2))

Reading example

from numpy import load

data = load(’mydata.npz’)

Now the two saved arrays can be accessed as data.f.A and data.f.b, respec-
tively.

7.6 Reading CSV files

Often, CSV (“comma separated value”) files are used as a plain text data ex-
change format. While loadtxt can handle the simplest of CSV files, oftentimes
the presence of header rows or columns, or variable numbers of columns com-
plicate the casting of the data into a Numpy array. Consider, for example, the
following tea-time order list in a file named teatime.csv:

,"Quantity","Price"

"Coffee",21,1.2

"Tea",33,0.8

The Python csv module allows robust reading of such files. It is often convenient
to read in the entire file into a Python list of lists:

import csv

reader = csv.reader(open(’teatime.csv’, ’r’))

data = [row for row in reader]

The elements of data are strings, so we might want to convert the “quantity”
column into an integer array q and the “price” column into a floating point
array p:

q = array([int(row[1]) for row in data[1:len(data)]])

p = array([float(row[2]) for row in data[1:len(data)]])

It is possible, of course, to write more sophisticated code which avoids multiple
passes over the data. For adoption to different CSV coding conventions consult
the csv module documentation.
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8 Mutable and immutable objects

As already remarked in Section 2.5, Python variables are merely references
(pointers) to a region in computer memory which stores the data. Assignments
only copy the pointer, not the data itself.

Examples

In [1]: a=ones(2); b=a; a[0]=42; print(a,b)

[ 42. 1.] [ 42. 1.]

In [2]: a=pi; b=a; a=42; print(a,b)

42 3.14159265359

How can this happen? In the first example, the array ones(2) is created
as a mutable object—a region in memory which contains the two floating point
numbers 1.0 and 1.0—while a is merely a reference to this memory region. The
assignment b=a copies the reference, so that any change to the data affects the
array referenced by both a and b.

In the second example, after a=pi; b=a, both variables point to the object
pi. However, pi is a constant and therefore immutable, so operating on a
reference to it does not change the value of pi but rather creates a new reference,
here to the immutable object 42. As a result, the variables a and b end up
referencing different objects.

In Python, numbers, strings, and Python tuples are immutable, while ar-
rays and Python lists and dictionaries are mutable. More generally, mutability
is part of the object type specification; if in doubt, consult the specific type
documentation.

Forced copy of array data If you need a true copy of array data, you have
to force it via the copy() method:

In [3]: a=ones(2); b=a.copy(); a[0]=42; print(a,b)

[ 42. 1.] [ 1. 1.]

Arithmetic expressions behave the way you would naturally expect:

In [4]: a=ones(2); b=2*a; a[0]=42; print(a,b)

[ 42. 1.] [ 2. 2.]

Mutable and immutable objects as function arguments Data passed as
a function argument can only be modified from within the function if the object
type is mutable. What remains local within the scope of a function is only the
reference, not the data itself. The explanation for the following example goes
along the lines of the assignment example above.

In [5]: a=ones(2); b=1

In [6]: def f(a,b):

...: a[0]=2

...: b=3
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Figure 1: Simple plot of functions of a single variable.

In [7]: f(a,b); print(a,b)

[ 2. 1.] 1

9 Short self-contained examples

9.1 Function plotting in 2D

Figure 1 shows a simple plot of scalar functions generated by the code below.
The example demonstrates further how to switch to TEX-typesetting for all
labels and how to annotate graphs.

#! /usr/bin/env python3

from pylab import *

N = 100 # Number of plot points

xmin = 0

xmax = pi

xx = linspace(xmin, xmax, N)

yy = sin(xx)

zz = cos(xx)

rc(’text’, usetex=True) # Use TeX typesetting for all labels

figure(figsize=(5,3))

plot(xx, yy, ’k-’,

xx, zz, ’k:’)

xlabel(’$x$’)

ylabel(’$y$’)

title(’Sine and Cosine on the Interval $[0,\pi]$’)

legend((’$y=\sin(x)$’,

’$y=\cos(x)$’),
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Figure 2: A graph of a function in two variables. Note that we use a gray-scale
colors to for reproduction on standard laser printers; for screen output there are
visually more appealing color maps.

loc = ’lower left’)

annotate(r’$\sin(\frac{\pi}{4})=\cos(\frac{\pi}{4})=\frac{1}{\sqrt{2}}$’,

xy = (pi/4+0.02, 1/sqrt(2)),

xytext = (pi/4 + 0.22, 1/sqrt(2)-0.1),

size = 11,

arrowprops = dict(arrowstyle="->"))

xlim(xmin,xmax)

savefig(’sinecosine.pdf’, bbox=’tight’)

show()

9.2 Function plotting in 3D

The following is an example for plotting the graph of the function of two vari-
ables

f(x, y) = exp(−x2 − y2) .

The output is shown in Figure 2

#! /usr/bin/env python3

from pylab import *

from mpl_toolkits.mplot3d import Axes3D

figure()

ax = subplot(111, projection=’3d’)

26



x = linspace(-3,3,40)

xx, yy = meshgrid(x,x)

zz = exp(-xx**2-yy**2)

ax.plot_surface(xx, yy, zz,

rstride=1,

cstride=1,

cmap=cm.binary,

edgecolor=’k’,

linewidth=0.2)

ax.set_xlabel(r’$x$’)

ax.set_ylabel(’$y$’)

ax.set_zlabel(’$z$’)

title(r’The function $z=\exp(-x^2-y^2)$’)

savefig(’plot3d.pdf’)

show()

9.3 Stability of multistep methods

Stability of a numerical method for solving ordinary differential equations is
of great theoretical and practical importance. A necessary condition that any
method has to satisfy is zero-stability—it asserts that small perturbations in the
initial data will lead to bounded perturbations of the result in the limit of small
step size. Let us take the backward differentiation formula of order 6 (BDF6)
as an example. To verify zero-stability, we have to check that the roots of its
first characteristic polynomial,

ρ(z) =
147

60
z6 − 6 z5 +

15

2
z4 − 20

3
z3 +

15

4
z2 − 6

5
z +

1

6
,

lie on or within the unit circle of the complex plane. For stiff equations, the
region of absolute stability is also important. It is defined as the region of the
complex hλ-plane in which the stability polynomial, here

p(z;hλ) = ρ(z)− hλ z6

has roots of modulus no more than 1. For a thorough introduction to these
concepts, see [3]. So the computational tasks are:

1. Plot the roots of the first characteristic polynomial with the complex unit
circle for comparison.

2. Compute the root with the largest modulus and check if it exceeds 1.

3. Plot the region of absolute stability.

These tasks are accomplished by the following code; the resulting root plot is
shown in Figure 3 and the region of absolute stability in Figure 4.

#! /usr/bin/env python3

from pylab import *
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bdf6 = array([147, -360, 450, -400, 225, -72, 10])

R = roots(bdf6)

c = exp(1j*linspace(0,2*pi,200))

figure()

plot(R.real, R.imag, ’ko’,

c.real, c.imag, ’k-’)

title(’Roots of the first characteristic polynomial for BDF6’)

savefig(’zero-stability.pdf’, bbox=’tight’)

# It is known that 1 is a root, so we devide it out because the

# root condition cannot be decided numerically in this marginal case.

z1 = array([1,-1])

reduced_bdf6 = polydiv(bdf6, z1)[0]

if max(roots(reduced_bdf6))>1.0:

print "BDF6 is not zero-stable"

else:

print "BDF6 is zero-stable"

# Now lets plot the region of absolute stability

rhs = array([60, 0, 0, 0, 0, 0, 0])

def stabroots(z):

R = roots(bdf6 - z*rhs)

return max(abs(R))

stabroots = vectorize(stabroots)

x,y = meshgrid(linspace(-10,30,350),

linspace(-22,22,350))

z = stabroots(x + 1j*y)

figure()

contour(x, y, z, [1.0], colors=’k’)

contourf(x, y, z, [-1.0,1.0], colors=[’0.85’])

title(’Absolute stability region for BDF6’)

grid(True)

savefig(’abs-stability.pdf’, bbox=’tight’)

show()

9.4 Hilbert matrix

The Hilbert matrix is a standard test case for linear system solvers as it is ill-
conditioned, but has a known inverse [8]. We shall test the default solver of
Pylab as follows.
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For each n×n Hilbert matrix H where n = 1, . . . , 15 compute the solution to
the linear system Hx = b, b = (1, . . . , 1). Calculate the error and the condition
number of the matrix and plot both in semi-logarithmic coordinates.

Solution

#! /usr/bin/env python3

from pylab import *

from scipy.linalg import hilbert, invhilbert

def test (n):

H = hilbert(n)

b = ones(n)

return norm(solve(H,b) - dot(invhilbert(n),b)), cond(H)

test = vectorize(test)

nn = arange(1,16)

errors, conds = test(nn)

figure()

semilogy(nn, errors, ’-’,

nn, conds, ’*’)

legend((’Error’,

’Condition Number’),

loc = ’lower right’)

title(’Hilbert matrix test case for numpy.linalg.linalg.solve’)

show()

9.5 Least square fit of a straight line

Calculate the least square fit of a straight line to the points (xj , yj), given as
two arrays x and y. Plot the points and the line.

Solution

#! /usr/bin/env python3

from pylab import *

from scipy.linalg import lstsq

def fitline (xx, yy):

A = c_[xx, ones(xx.shape)]

m, b = lstsq(A, yy)[0]

return m, b

xx = arange(21)

yy = xx + normal(size=xx.shape)

m, b = fitline(xx, yy)
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Figure 5: Q-Q plot comparing the Poisson and the normal distribution.

figure()

plot(xx, yy, ’*’,

xx, m*xx+b, ’-’)

legend((’Data’, ’Linear least square fit’),

loc = ’upper left’)

show()

9.6 Q-Q plot

A quantile-quantile plot (“Q-Q plot”) is often used in statistical data analysis to
visualize whether a set of measured or otherwise generated data is distributed
according to another, usually assumed, probability distribution [9].

As an example, we compare samples a Poisson distribution (as synthetic
“data”) to the normal distribution with the same mean and standard deviation
(as the “model”); the result is shown in Figure 5.

#! /usr/bin/env python

from pylab import *

p = poisson(lam=10, size=4000)

m = mean(p)

s = std(p)

n = normal(loc=m, scale=s, size=p.shape)

a = m-4*s

b = m+4*s
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figure()

plot(sort(n), sort(p), ’o’, color=’0.85’,

markeredgewidth=0.2, markeredgecolor=’k’,)

plot([a,b], [a,b], ’k-’)

xlim(a,b)

ylim(a,b)

xlabel(’Normal Distribution’)

ylabel(’Poisson Distribution with $\lambda=10$’)

grid(True)

savefig(’qq.pdf’, bbox=’tight’)

show()

Note: In one compares an empirical distribution against an assumed model
distribution, one does not need to resort to sampling the model, but can use
the percentage point function (PPF), which is the inverse of the cumulative
distribution function (CDF), when available. In the above example, that would
amount to replacing the assignment of n by the following code:

from scipy.stats import norm

n = norm.ppf((0.5+arange(len(p)))/len(p), loc=m, scale=s)

(Since the resulting vector is already sorted, it also does not need explicit sort-
ing.) When available, the PPF is the preferred way of doing the plot as avoids
sampling uncertainty for the assumed model distribution.
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