1. Consider the subspace V < C([0,1];R) spanned by the basis B = [1,e*] and en-
dowed with inner product .

(p,q) =/0 p(z)q(z)dz.

(a) Consider the linear operator Lp = p/. State nullspace and range of L; no
computation requlred

orthonormal basis.

(f) Find the matrix representing L with respect to your orthonormal basis.
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2. Let V = M,(R). Fix two vectors u,v € R? and define

F(A) = o Av.
(a) Show that f: V — R is a linear transformation.

(b) Recall the definition of the Frobenius inner product on V,

1,5=1

(). - (3)

Find a matrix B € V such that

and set

f(A) = ({4, B).
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3. Let V = M, (F) with n > 2. The determinant is a map det: V — F.

(a) Show that det is not a linear transformation.

(b) Givert an argument that det is differentiable.

Hint: Computing the derivative is possible, but it is not easy. Better use a
short (1) general argument.

(c) Show that D det(0) = 0.

Note: This formula is using the symbol 0 in two different meanings. As part of
your answer, you should state explicitly what each of the zero symbols means,
i.e., which space it belongs to.
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4. Are the following statements true or false? If true, state a brief explanation or name
the relevant theorem. A full proof is not required. If false or incomplete, modify the
statement so that it becomes true, and give a short comment on your modification.

a) A normed vector space is a metric space.

(
(b) A set can be both open and closed.

(
(

)

)
¢) A set is compact if it is closed and bounded.
d) A sequence, together with its limit, is a closed set.
)

(e) The rational numbers are a closed set.
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5. (a) Find the second-order Taylor polynomial of the function

fly)=(2-z-y)°

at the point (1,1).
(b) On C([0,00),R), consider the (nonlinear) map

7)) = [ 10 5(s)ds
Compute the derivative DT(f)]g](%).

Note: A formal computation suffices — you do not need to prove that your result

indeed satisfies the properties of the Fréchet derivative. You may assume that
f(t) > 1forall t € [0, 00).
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6. Let X be a Banach space, A: X — X a linear operator with operator norm []AH <1,
and b € X.

~ Show that f(z) = Az + b has a fixed point. | (10)
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7. Let f: R® — R? be a C*-function such that f(5,—2,1) =0 and

1 -1 2

Df(5’“2’1)=<1 1 —2)' & diffeendidf,

v ,
(a) Show that there exists an open interval I = (1—4, 1+4) and function g: I — R?
such that g(1) = (5,—2) and f(g1(2),92(2),2) =0 for all z € I.

(b) Compute Dg(1).

(c) Does there exist a function h defined on some neighborhood of z = 5 with
- values in R? such that f(x, hi(z), he(z)) = 07
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