
Root-finding in d dimensions – Newton method and
Broyden method

Advanced Programming

November 19, 2024

1 Continuous differentiability in d dimensions

Recall that if f : Rd → Rd is at least once continuously differentiable, then for every x ∈ Rd

there exists a Jacobian matrix Df(x) depending continuously on x such that

f(x+∆x) = f(x) +Df(x)∆x+ o(∥∆x∥) . (1)

Here, o(∥∆x∥) is shorthand for some function ϕx : Rd → Rd, defined for every x ∈ Rd, such
that

lim
∆x→0

ϕx(∆x)

∥∆x∥
= 0 . (2)

The Jacobian is the matrix of partial derivatives,

Df(x) =

∂1f1(x) · · · ∂df1(x)
...

...
∂1fd(x) · · · ∂dfd(x)

 . (3)

2 Newton’s method in d dimensions

We proceed as in the case of Newton’s method for functions of a single variable. Suppose
that xn ∈ Rd is the current approximation of a root of f . Writing ∆xn+1 = xn+1 − xn, we
seek to determine xn+1 as the root of the linear approximation to f at x = xn. Dropping
the higher-order terms in (1), this linear approximation reads

f(xn+1) = f(xn +∆xn+1) ≈ f(xn) +Df(xn)∆xn+1 . (4)

Setting the right hand side to zero, we obtain the d-dimensional Newton update ∆xn+1 by
solving the linear system

Df(xn)∆xn+1 = −f(xn) . (5)

1

This can be written in the form

xn+1 = xn −Df(xn)
−1f(xn) (6)

to emphasize that it is a proper generalization of the familiar formula for Newton’s method
in one variable. However, when d is large, it is better to solve (5) directly as there are
iterative linear solvers that are much faster than the O(d3) complexity required to compute
the inverse Jacobian.

Newton’s method can be shown to converge quadratically in a sufficiently small neigh-
borhood of a root. Even though, as in one dimension, there is no guarantee that it converges
at all for arbitrary starting points x0, in practice it is fairly robust and fast.

The drawback is that a Jacobian is required, which may not be readily available: for
example, f may not be available in the form of a simple mathematical expression, but is
defined implicitly as the output of a complex piece of computer code. A second drawback
is that the Jacobian often requires O(d2) memory which may be too much for very large
problems. An example of such a dense Jacobian is the discrete integral equation in Section 5.2
below; on the other hand, the Jacobian in a second example, a discrete boundary value
problem described in Section 5.1, is sparse and can be stored more efficiently.

3 Secant-like methods in d dimensions

To generalize the derivation of the secant method from one dimension, let us write Jn to
denote the approximation to the Jacobian at iteration n. Writing fn = f(xn), setting
∆fn = fn − fn−1, and dropping, once again, higher order terms in (1), we obtain the so-
called secant condition

∆fn = Jn∆xn . (7)

This again is a linear system of equations, but the unknowns are the d2 elements of Jn. On
the other hand, we only have d equations, so the system is highly underdetermined when
d > 1.

Broyden’s idea (in a modern interpretation) is to start with a guess for the initial Jacobian
J0. Then, at each step, first update xn, then use the resulting ∆xn and ∆fn solve an
optimization problem for Jn, where the secant condition (7) appears as a constraint. In
particular, the “good Broyden method” results from

minimize ∥Jn − Jn−1∥2F
subject to Jn∆xn = ∆fn

(8)

which, as shown in Appendix A.3, implies the update

Jn = Jn−1 +
∆fn − Jn−1∆xn

∥∆xn∥2
∆xT

n . (9)

2

To avoid the need for matrix inversion (or for solving a linear system) at every step, the
Sherman–Morrison formula, see equation (59) in Appendix A.4, can be used to convert this
update rule into an update for the inverse matrix,

J−1
n = J−1

n−1 +
∆xn − J−1

n−1∆fn

∆xT
n J−1

n−1∆fn
∆xT

n J−1
n−1 . (10)

Alternatively, the “bad Broyden method” results from

minimize ∥J−1
n − J−1

n−1∥2F
subject to Jn∆xn = ∆fn

(11)

which implies the update

J−1
n = J−1

n−1 +
∆xn − J−1

n−1∆fn
∥∆fn∥2

∆fT
n . (12)

While the “good” method appears to converge better in many simple test cases, this is not
universally true; there are also problems where the “bad” method is better. Moreover, the
“bad” method tends to be computationally cheaper. Thus, this historical distinction is not
always justified [1].

This gives the following algorithm:

1. Choose an initial guess x0 for the root and J−1
0 for the inverse Jacobian.

2. At step n = 1, 2, . . . , first update the location of the root via

xn = xn−1 − J−1
n−1 f(xn−1) . (13)

3. If f(xn) is smaller than some tolerance (e.g., by testing the maximal absolute value of
its components), terminate with success.

4. If not, update the inverse Jacobian via (10) (“good Broyden”) or (12) (“bad Broyden”)
and go to Step 2.

Note: Without loss of generality, we may set J0 = I, the identity matrix. For if another
(nonsingular) initial Jacobian J0 proves to be better, we can replace the original problem
f(x) = 0 by the equivalent problem g(x) = 0 where

g(x) = J−1
0 f(x) . (14)

Then the sequence of Broyden updates for f with initial matrix J0 is identical to the sequence
of Broyden updates of g with initial matrix I. Computationally, this inverse can often be
computed efficiently by solving a linear system (e.g. for the discrete boundary value problem
in Section 5.1 below).

3

4 Limited memory Broyden methods

In the Broyden method, each update adds a rank-1 matrix to the approximate Jacobian or
to the inverse Jacobian. The update of the inverse formulation of the Broyden method can
be written

J−1
n = J−1

n−1 + un v
T
n (15)

or, by recursive insertion with J0 = I,

J−1
n = I +

n∑
k=1

uk v
T
k (16)

where, e.g. for the “good” Broyden method, see (10),

uk =
∆xk − J−1

k−1∆fk

∆xT
k J−1

k−1∆fk
and vTk = ∆xT

k J−1
k−1 . (17)

Thus, if d ≫ n, it is more efficient to store the uk and vk. In particular, when J0 = I,
matrix-vector products can be written

J−1
n x = x+

n∑
k=1

uk (v
T
k x) (18)

where the term in parentheses is an inner product, thus can be evaluated in O(d) elementary
arithmetic operations, so that the overall complexity of evaluating (18) is O(dn) which, when
d ≫ n, is much better than the O(d2) operations required for a full matrix-vector product.

Since both memory requirements and computation time increase with each Broyden it-
eration, it is often important to keep the rank of the update matrix bounded, say, with
maximal rank p+ 1. This can be done in two ways.

4.1 Simple pruning

When n > p, keep only the most recent p vectors in the sum (16). To be precise, for the
limited memory Broyden (LMB) method, perform of Steps 1–3 as before, followed by

4’. Retain only un−p, . . . , un−1 and vn−p, . . . , vn−1. Then compute a new pair of update
vectors un and vn (using (17) for the “good” Broyden method or analogous expressions
for the “bad” Broyden method), where the required matrix-vector products use (18),
and matrix-vector products use an analogous expression, summing over update vectors
with index k = n − p, . . . , n − 1 only. Then go to Step 2, retaining update vectors
un−p, . . . , un and vn−p, . . . , vn.

4

4.2 SVD-based pruning

It is often better not to simply discard the oldest update vectors, but rather compute a
best rank-p approximation of the update. In principle, a best rank-p approximation with
respect to the Frobenius norm is known to be given by the singular value decomposition of
the update matrix, retaining only the p largest singular values. To implement this efficiently
when d ≫ p, we proceed as follows (see [2]).

First, notice that (16) can be written as

J−1
n = I + UV T (19)

where U is d × q and V T is q × d (with q = n if no pruning was applied in previous steps)
with

U =

 | |
u1 . . . uq

| |

 and V T =

— vT1 —
...

— vTq —

 . (20)

Then compute the RQ-decomposition of V T ,

RQ = V T , (21)

where Q is an orthogonal q × d-matrix and R is q × q. Next, compute the singular value
decomposition

UΣW T = UR . (22)

Assuming that the singular values in Σ are ordered in decreasing magnitude (as guaranteed
in standard library implementations), a new rank-p pair of update matrices is given by the
first p columns of UΣ and the first p rows of W TQ, respectively.

Using these reduced update matrices in the expressions for the Broyden update, a new
pair of update vectors is generated just as before, and appended to the pruned update
matrices.

5 Test problems

The following problems have been used historically as test problems for Broyden-type meth-
ods (see, e.g., [2, Appendix A]).

5.1 Discrete boundary value problem

On the interval I = (0, 1), the boundary value problem

u′′(t) = a (u(t) + t+ 1)3 , (23)

u(0) = u(1) = 0 (24)

5

can be discretized on d subintervals of equal length h = 1/d. Here, a is a parameter with
default value a = 1

2
. Setting ti = ih and writing ui as the discrete approximation to u(ti),

we can write the standard second order difference approximation as

ui−1 − 2ui + ui+1

h2
− a (ui + ti + 1)3 = 0 (25)

for i = 1, . . . , d− 1, with u0 = ud = 0. Thus, the true dimension of this system of nonlinear
equations is d− 1. Note that if the vector of unknowns is denoted u = (u1, . . . , ud−1)

T , the
nonlinear system (25) takes the form

Bu−N(u) = 0 , (26)

where

B =
1

h2

−2 1 0

1
.
. 1

0 1 −2

 and N(u) = a

 (u1 + t1 + 1)3

...
(ud−1 + td−1 + 1)3

 . (27)

Rearranging terms, (26) can be written in fixed point form,

u = B−1N(u) ≡ Φ(u) . (28)

Computationally, the inverse of B should not be computed explicitly, as that would destroy
the sparse, tri-diagonal structure of B, but rather be implemented by solving a system of
linear equations.

5.2 Discrete integral equation

The nonlinear integral equation

u(t) + a

∫ 1

0

H(s, t) (u(s) + s+ 1)3 ds = 0 (29)

kernel

H(s, t) =

{
s (1− t) for s ≤ t ,

t (1− s) for s > t ,
(30)

is approximated, on the same partition as before, by the discrete Riemann sum

ui + a h

(i∑
j=1

(1− ti) tj (uj + tj + 1)3 +
d∑

j=i+1

ti (1− tj) (uj + tj + 1)3
)

= 0 (31)

6

for i = 1, . . . , d. As before, the parameter a takes the default value a = 1
2
. Writing u =

(u1, . . . , ud) to denote the vector of unknowns, (31) can be written as

u−HN(u) = 0 (32)

where H = (hij) is the d× d-matrix with matrix elements

hij =

{
tj (1− ti) for i ≥ j

(1− tj) ti for i < j
(33)

and

N(u) = −a h

(u1 + t1 + 1)3

...
(ud + td + 1)3

 . (34)

Thus, this test problem also has a fixed point form similar to (28), namely

u = HN(u) ≡ Φ(u) . (35)

A Technical details

A.1 The trace of a matrix

Matrix optimization problems involving the Frobenius norm can often be written in a
coordinate-free way using the trace. This leads to shorter and more concise computations,
and will be the strategy pursued here.

Given a square matrix A = (aij)ij ∈ Rd×d, its trace is defined as the sum of its diagonal
elements, i.e.

TrA =
d∑

i=1

aii . (36)

The following properties, which are easy to check and will be stated without proof, are used:

(i) The trace is a linear map,

(ii) TrA = TrAT (invariance under transposition),

(iii) Tr(AB) = Tr(BA) for all A ∈ Rd×k and B ∈ Rk×d.

Property (iii) implies immediately that the trace is invariant under all cyclic permutations
of matrix products and that the inner product of two vectors u, v ∈ Rd can be written

uTv = Tr(uTv) = Tr(vuT) . (37)

(iv) ⟨A,B⟩F = Tr(ABT) defines an inner product on the vector space of d× k matrices.

This inner product is called the Frobenius inner product, and the associated norm the Frobe-
nius norm,

∥A∥2F = Tr(AAT) =
d∑

i=1

k∑
j=1

a2ij . (38)

7

A.2 Lagrange multipliers

Recall the Lagrange multiplier theorem from Analysis II: Let f ∈ C1(Rd,R) and g ∈
C1(Rd,Rk). Suppose f(x) has a local extremum at x = x∗ ∈ Rd subject to the constraint
g(x) = 0, and the Jacobian matrix Dg(x∗) has full rank. Then there exists a unique λ ∈ Rk

such that the Lagrangian
L(x;λ) = f(x) + λTg(x) (39)

has a critical point at x = x∗, i.e. ∇L(x∗) = 0.
In practice, the theorem is always applied in reverse order: we compute solutions of

∇L(x∗) = 0 as candidate solutions to the constrained extremal problem, then use other
means (e.g. convexity, compactness) to argue for sufficiency.

In our setting, the objective function f is the Frobenius norm of a matrix expression. In
other words, the domain of f is not Rd, but some space of matrices. While it is certainly
possible to identify a space of matrices with some Rd of matching dimension and use the
formulation of the Lagrange multiplier theorem as stated above, this leads to terrible notation
and is best avoided in favor of a slightly more abstract approach, which is explained now.

Let M be a normed vector space. Let x : R → M be a smooth curve in M . Then x′(t)
is a tangent vector to the curve for any t ∈ R. Since M is a vector space, its tangent space
is isomorphic to M itself. In particular,

δx ≡ x′(0) (40)

is a tangent vector and as such, is an element from M . Vice versa, any tangent vector is
of the form (40). More generally, for a function f ∈ C1(M,R), we define the variational
derivative

δf =
df(x(t))

dt

∣∣∣∣
t=0

= Df(x(0)) δx . (41)

Then f has a critical point at x = x∗ if and only if δf(x∗) = 0 for any δx ∈ M .
In this setting, the Lagrange multiplier theorem reads: Let f ∈ C1(M,R) and g ∈

C1(M,Rk). Suppose f(x) has a local extremum at x = x∗ ∈ M subject to the constraint
g(x) = 0, and the Jacobian operator Dg(x∗) has full rank. Then there exists a unique λ ∈ Rk

such that the Lagrangian
L(x;λ) = f(x) + λTg(x) (42)

has a critical point at x = x∗, i.e. δL(x∗) = 0 for any δx ∈ M .
Important note: In typical applications in the calculus of variations, this setting is further

generalized by taking M to be “admissible sets” that are not vector spaces, but, for example,
affine spaces or manifolds. In this case, tangent vectors δx are not elements from M . In
this case, one has to think more carefully about the concept of tangent space. Everything
above still stands, and the notation is useful, except that the membership of δx needs to be
adapted to the correct notion of tangent space.

8

A.3 Derivation of the “good” Broyden method

Recall that the “good” Broyden method assumes that Jn−1 is given and Jn is determined by
solving the constrained optimization problem

minimize ∥Jn − Jn−1∥2F = Tr[(Jn − Jn−1)(Jn − Jn−1)
T]

subject to Jn∆xn = ∆fn .
(43)

(Cf. (38) for expressing the Frobenius norm in terms of the trace.) Rewriting the inner
product in (42) in terms of the trace, cf. (37), we can write out the Lagrangian for this
problem as

L(Jn;λ) =
1
2
Tr[(Jn − Jn−1)(Jn − Jn−1)

T] + Tr[(Jn∆xn − fn)λ
T] . (44)

(The factor 1
2
is a convenience factor that does not change the problem because linear scaling

of the objective function does not change the location of the extrema.)
We compute

δL = 1
2
Tr[δJn (Jn − Jn−1)

T] + 1
2
Tr[(Jn − Jn−1) δJ

T
n] + Tr[δJn∆xn λ

T]

= Tr[(Jn − Jn−1) δJ
T
n] + Tr[λ∆xT

n δJT
n]

= Tr[(Jn − Jn−1 + λ∆xT
n) δJ

T
n] (45)

where, in the second equality, we have used the invariance of the trace under transposition.
Since we can interpret the final expression as an inner product between two matrices, cf.
property (iv) above, we see that δL = 0 for all δJn ∈ Rd×d if and only if

Jn − Jn−1 + λ∆xT
n = 0 . (46)

To eliminate the Lagrange multiplier λ from this expression, we multiply (46) with ∆xn from
the right and use the constraint Jn ∆xn = ∆fn:

∆fn − Jn−1∆xn + λ∆xT
n ∆xn = 0 , (47)

so that

λ =
Jn−1∆xn − fn

∆xT
n ∆xn

. (48)

Inserting (48) into (46) and solving for Jn, we obtain the “good” Broyden update (9). The
“bad” Broyden update (12) can be derived similarly.

A.4 Derivation of the Sherman–Morrison formula

Suppose we have an invertible matrix A ∈ Rd×d and perform a rank-1 update, setting

B = A+ uvT (49)

9

for some given vectors u, v ∈ Rd. We ask the question whether the inverse of A is related to
the inverse of B also by a rank-1 update. In other words, do there exist x, y ∈ Rd such that
the ansatz

B−1 = A−1 + xyT (50)

holds true?
To answer this question, let us verify the properties of the inverse matrix. In order for

(50) to hold, we must have

I = BB−1 = (A+ uvT)(A−1 + xyT) = I + AxyT + uvTA−1 + uvTxyT (51)

or, canceling I and multiplying by A−1 from the left,

xyT + A−1uvTA−1 + A−1uvTxyT = 0 . (52)

We can thus determine the direction of x by multiplying (52) with some column vector from
the right. Then most factors in the resulting expression will be scalar, except for x in the
first term and A−1u in the second and third term. Thus, x must be in the direction of A−1u.

Similarly, we must have

I = B−1B = (A−1 + xyT)(A+ uvT) = I + A−1uvT + xyTA+ xyTuvT (53)

or, canceling I and multiplying by A−1 from the right,

A−1uvTA−1 + xyT + xyTuvTA−1 = 0 . (54)

We can thus determine the direction of y by multiplying (54) with some row vector from the
left. Then most factors in the resulting expression will be scalar, except for yT in the second
term and vTA−1 in the first and third term. Thus, yT must be in the direction of vTA−1.

Thus, we have established that (50) can only hold true if

xyT = αA−1uvTA−1 (55)

for some value of α. To determine α, we multiply (52) or, equivalently, (54) by vT from the
left and by u from the right, to obtain

vTxyTu+ (vTA−1u)2 + vTA−1uvTxyTu = 0 . (56)

Likewise, we multiply (55) by vT from the left and by u from the right, to obtain

vTxyTu = α (vTA−1u)2 . (57)

Inserting (57) into (56), we find that

α = − 1

1 + vTA−1u
. (58)

This derivation is only formal, as it assumes invertibility of B, but suggests the following
theorem: Suppose A ∈ Rd×d is invertible and u, v ∈ Rd. Then A + uvT is invertible if and
only if 1 + vTA−1u ̸= 0. In this case,

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (59)

A full proof is an exercise in Linear Algebra and left to the reader. Expression (59) is
known as the Sherman–Morrison formula.

10

References

[1] A. Griewank, Broyden updating, the Good and the Bad! Doc. Math. (2012), 301–315.

[2] B. van de Rotten, A limited memory Broyden method to solve high-dimensional systems
of nonlinear equations, PhD thesis, Universiteit Leiden, 2003.

11

