Foundations of Information Systems

Final Exam

February 20, 2024

Last Name:	
First Name:	
Signature:	

1. Are the following identities true or false? If true, give a proof. If false, give a counterexample.

(a)
$$(a \wedge b)' \wedge c = (a \vee b) \vee c'$$

(b) $((a \vee b) \wedge c)' = (a \wedge c)' \wedge (b \wedge c)'$
(a) Take $C = 0 \Rightarrow (a \wedge b)' \wedge c = 0$ but $(a \vee b) \vee c' = 1$
 \Rightarrow The identity is false.
(b) $((a \vee b) \wedge c)' = (a \vee b)' \vee c'$ (be thorgan)
 $= (a' \wedge b') \vee c'$ (be thorgan)
 $= (a' \wedge b') \vee c'$ (distributivity)

=
$$(a \land c)' \land (b \land c)'$$
 (De Morgan)

This proves the identity as stated.

- 2. (a) Convert the decimal number 433 to hexadecimal.
 - (b) Add the 4-bit two's complement binary numbers 1110 and 1011.
 - (c) Confirm your result by converting all three numbers from (b) to decimal.
 - (d) How do you detect overflow when adding two's complement binary numbers?

(5+5+5+5)

(a) 433:
$$16 = 2.7$$

 -32
 113
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -112
 -110
 -1011
 -1001
 -1001
 -1001
 -1001
 -1001
 -1001
 -1001
 -1001
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1010
 -1000
 -1010
 -1010
 -1000
 -1010
 -1000
 -1010
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -1000
 -10000
 -10000
 -10000
 -10000
 -100000
 -1000000
 $-100000000000000000000000000000000000$

(d) Addition of differently-signed number can rever overflow. Addition of same-signed numbers has overflow if and only if sign-bit of the result is different from that of the input numbers.

- 3. (a) Draw a finite state machine that can recognize whether a 3-bit binary string is a palindrome, i.e., reads the same backwards as forwards.
 - (b) State a regular expression that is equivalent to the machine from part (a).
 - (c) Is it possible to design a finite state machine that recognizes palindromes of arbitrary length? Explain!

(c) Checking for the reverse-repeat of an arbitrary-length string requires an arbitrary number of states, which cannot be done with an TSA.

(5+5+5)

- 4. The following bit strings of a Hamming-(8,4) encoded message are received. Correct single-bit errors or detect double-bit errors as appropriate.
 - (a) 11001011
 - (b) 00010100
- (a) $\frac{1001011}{1001011}$ $p_{0}=1 \Rightarrow assume 1-bit error$ $----- p_{2}=0$ ferror in position $(00)_{2}=4$ $p_{4}=1$ p_{4
 - $p_0=0$ => even number of errors - - - $p_1=0$ - $p_2=1$ another error, so message is unrecoverable.

5. Suppose you have a file data_A. You create a hard link data_B and a soft link data_C to it. Now you delete data_A. Is the data lost? Can you still access it via data_B? Via data_C? (5)

The data can still be accessed via data_B.

Reason: Both hardlinks are direct references to the inode, which heeps a reference count. Inode data will only be deleted if all references to it are gone

The soft link data-C, nowever, still points to data_A, so is now stale.

6. Consider the following router network which uses distance vector routing.

- (a) State the optimal distance vector and routing table for router C. You do not need to compute anything as the network is simple enough to spot the answer directly.
- (b) Now suppose that router C is malicious and wants to cut router F off the network. Can it do this? If so, what distance vector does it need to broadcast to its neighbors to attract all traffic destined for F?

(5+5)

(a)	From G to	A	B	С	\mathcal{D}	E	Ť	
	distance	2	2	Ċ	I	2	4	
	first hop	A	в	С	J	D	J	

(b)

If C advert	cses a smal	ll enough	distance	to Ŧ	(e.g.	d (C,∓) = 1,),
F's direct re	lighton will	stat routin	y traffic	for F	via	C (for I)) or
via D-C	(for E).	Thus, C	can drop	all po	eckets	destined	for F.

- 7. Suppose you have three identical disks. The most natural way to create redundant storage from these three disks is a RAID-5 array. Your remember from class that RAID-5 with large capacity drives has a high probability of hitting an unrecoverable error during rebuild after a single-drive failure, so you ponder if it's worth investing in a fourth disk and using RAID-10 ("stripe of mirrors") instead. To help making this decision, rate the performance of the four-disk RAID-10 *relative* to the three-disk RAID-5, with a brief explanation, in each of the following categories:
 - (a) Usable capacity (*not* raw capacity!)
 - (b) Read speed when sequentially reading a large file
 - (c) Write speed when sequentially writing a large file
 - (d) Write speed when writing random blocks
 - (e) Probability of hitting an error during rebuild after a single-drive failure

Extra credit: Based on these numbers, write a recommendation whether or not to purchase the extra drive and use it in RAID-10 configuration. (2+2+2+2+2+5)

(a) RAID-5 uses the capacity of one disk for parity of not capacity is same (two disks) RAID-10 uses two disks as mirrors

- (b) All distas can be used for reading => RAID-10 is $\frac{4}{3}$ faster than RAID 10
- (c) Assuming that parity/redundant writing is free, sequential writes are limited by the effective number of disks carrying first copy of data (2 in both cases) => sequential write speed is the same.
- (d) In RAID-10, woost case is that all blokes are on one mirrored pair, so we'd got single disk performance. If blokes are truely random and can be pre-sorted, performance can be up to twice as good.
 - In RAID-5, need to read old dote + parity, then write both back. Since this occupies two of the 3 disks, no inteleaving of operations possible

=> RAID-5 can be up to 4 times slower than RAID-10 for random writes.

(e) RAID-5 rebuild requires reading all dota from the two surviving disks. RAID-10 rebuild requires making a copy of the mirror of the failed disk. => RAID-10 rebuild is twice as safe. 8 (Solution ctd./scratch paper)

Recommendation

- · If safety is a concern, RAID-10 is better, but a factor 2 is not a game changer here. Better to buy the extra disk, but operate in RAID-6.
- · On the other hand, the speed advantage of RAID-10 may be significant, especially for workloads that perform frequent random writes. But should be used only if safety quarantees suffice.