
One of the key components of machine learning is the ability to model experi-
mental or real world data. We will focus on a simple setup. Assume we are given
a set of n data points {(xi, yi) : xi, yi ∈ N, x1 < x2 < · · · < xn, 1 ≤ i ≤ n}
and that we think of these data points of samples of some ‘ground truth’ model,
i.e., we imagine there exists some function F : R → R such that F (xi) = yi.

The goal is to try to estimate this ‘ground truth’ based on the samples we
are provided with. It is important to point out that if we are talking about real
world measurements, the values yi might not be exact, similar to how reading
a length measurement off a ruler might be slightly inaccurate based on how we
position our eyes relative to the ruler. This means that we are not necessarily
interested in finding the best function that interpolates the exact pairs (xi, yi),
but something that encapsulates the overall pattern of the data points and is
robust to ‘measurement error’.

On a more formal level, consider the fact that we could exactly interpolate
the pairs (xi, yi) either with a piece-wise linear map or with splines or some
other piece-wise regular function. This will obviously match the measurements
exactly, but it will not ‘generalize’ well, in the sense that outside of the interval
[x1, xn], we would have very low confidence about the predictive power of our
interpolating function. In machine learning lingo, this is because we ‘overfit’
the training samples instead of ‘extracting the relevant information/model’ from
them.

Concretely, let us consider the following arrays:

x = np . array ( [ 0 , 1 , 2 , 3 ] )
y = np . array ([=1 , 0 . 2 , 0 . 9 , 2 . 1 ] )

We can plot them to see how they would look in a plane. For this, we will
import the standard plotting package in Python to the preamble of our code,
similar to how we import numpy.

import matp lo t l i b . pyplot as p l t

Now we can plot the 4 points in the plane as blue marbles by executing

p l t . p l o t (x , y , ’ o ’ , l a b e l=’ Or i g i na l data ’ , markers i ze=10)
p l t . l egend ( )
p l t . show ( )

To explain the syntax, we used the plot function and we called it on the
arrays x and y (in order). The other inputs are optional and serve as plot
formatting instructions. The ’o’ command means that the pairs (xi, yi) will be
presented as marbles of size 10 (the markersize=10 command) in the default
color (blue) and the label instruction will be used for the legend of the figure.
The command ‘plt.legend()’ constructs the legend and the ‘plt.show()’ command
displays the figure. Note that while the figure is being displayed, Python is still
running. Manually closing the figure will allow Python to continue through the
code after ‘plt.show()’, in this case terminating.

Inspecting the figure, we can see that the points are ‘almost’ colinear. So
it makes sense to imagine that the ‘ground truth’ is a linear function. The
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question now becomes how to estimate the ‘best’ linear fit to the given data. In
reality, the answer to this question is not unique and depends on what we mean
by ‘best’.

The most standard interpretation of ‘best’ in this context can be thought of
as follows. Consider an arbitrary line in the plane. Such a line can be uniquely
identified by two parameters, its slope m and its offset or y-intercept c. Using
these, we can think of the line as the function fm,c : R → R, x 7→ m · x+ c.

With this in mind, we can think of the point-wise error in using fm,c in-
stead of the ‘ground truth’ F as the quantity yi − ŷi := yi − (mxi + c). The
most natural interpretation of ‘best fit’ in this context is to imagine the two
vectors (y1, y2, . . . , yn) and (ŷ1, ŷ2, . . . , ŷn) as points in the n-dimensional space
Rn and to minimize the Euclidean distance between them. This is called the
least-squares-error (LSE) solution to the problem. The fact that this is in some
sense the most natural interpretation of ‘best fit’ in this context will become ap-
parent later in Linear Algebra when you discuss Moore-Penrose pseudoinverses
of matrices.

So now that we have a notion of ‘best fit’, we can solve the problem. In
other words we can find m and c that minimize the squared point-wise error,
in other words, that minimize the function ϕ : R2 → R given by ϕ(m, c) =∑n

i=1(yi − (mxi + c))2.
This is essentially a degree 2 equation in either m or c, so one could use

school techniques to figure out the roots and then find the average of the roots to
determine the minimizer. We will show a method that comes from Analysis. If a
continuously differentiable function is minimized inside its domain of definition,
then the gradient at the minimum has to be 0. In other words, if we differentiate
the function ϕ with respect to m (thinking of c as a constant), we want to find
the solution to the equation ∂ϕ

∂m (m, c) = 0 and similarly for swapping the roles

of m and c, we want to find the solution to ∂ϕ
∂c (m, c) = 0. Applying definitions,

this translates to the linear system of equations

0 = −2

n∑
i=1

xi(yi − (mxi + c))

0 = −2

n∑
i=1

(yi − (mxi + c)).

Simplifying, this can be rewritten as the 2-equation 2-unknown linear system

n∑
i=1

xiyi −m

n∑
i=1

x2
i − c

n∑
i=1

xi = 0

nc+m

n∑
i=1

xi −
n∑

i=1

yi = 0.
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We can now find the solutions via, for example, substitution.

m =
n
∑n

i=1 xiyi − (
∑n

i=1 xi) · (
∑n

i=1 yi)

n
∑n

i=1 x
2
i − (

∑n
i=1)

2

c =

∑n
i=1 yi −m

∑n
i=1 xi

n

The line fm,c with the slope and offset computed as above will be the line
that minimizes the squared point-wise error.

We can also implement this computation in Python, for example as a func-
tion that takes as inputs the x and y arrays and outputs the best fit slope and
offset.

def g e t s l o p e a n d o f f s e t l s (x , y ) :
number points = len ( x )
i f len ( y ) != number points :

raise Exception ( ’ bad inputs ’ )
sum x = sum( x )
sum xsq = sum( x**2)
sum y = sum( y )
sum xy = sum( x*y )
s l ope = ( number points *sum xy=sum x*sum y )/( number points *sum xsq=sum x **2)
o f f s e t = ( sum y=s l ope *sum x )/ number points
return s lope , o f f s e t

With this, we can expand our previous plotting to visually depict our com-
puted line.

m, c = g e t s l o p e a n d o f f s e t l s (x , y )
p l t . p l o t (x , y , ’ o ’ , l a b e l=’ Or i g ina l data ’ , markers i ze=10)
p l t . p l o t (x , m*x + c , ’ r ’ , l a b e l=’ F i t t ed l i n e ’ )
p l t . l egend ( )
p l t . show ( )

Note that for the y values we used the functional equation x 7→ mx + c
applied to the x values and we used ’r’ to tell Python that the fitted line should
be plotted as a simple line in red. Also, note that we can stack multiple ‘plt.plot’
commands before calling ‘plt.show()’. This will have the effect of overlapping the
different plotting instructions into a single figure. As we can see, the computed
line is very ‘close’ to the data points.

There are some built in methods in Python for doing the least squares error
fit. One of them is specifically for linear models and uses some linear algebra
trick to format the input vector x that will more sense a bit later in the Linear
Algebra course.

A = np . vstack ( [ x , np . ones ( len ( x ) ) ] ) .T #trans forms the row vec to r x in t o
# a column vec to r f o l l owed by a column of 1 s
m, c = np . l i n a l g . l s t s q (A, y , rcond=None ) [ 0 ]
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This uses a linear algebra numerical method (based on the pseudoinverse)
to calculate the slope and offset. Note that the values are not exactly identical,
but very close.

Another far more general option comes from the scipy package. This will fit
a prescribed class of curves to the data points by minimizing the squared point-
wise error. One needs to prescribe the so called ‘hypothesis’ class of curves that
the numerical solver will optimize within. In this case we can define a general
linear function by using ‘lambda’ definitions or directly by

def l i n e a r f u n c t i o n (x , a , b ) :
return a * x + b

Now we call call the curve fit method from the scipy package.

from s c ipy . opt imize import c u r v e f i t
m, c = c u r v e f i t ( l i n e a r f u n c t i o n , x , y ) [ 0 ]

Consider now a different data point set.

x = np . array ( [ 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ,
12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 2 2 ] )

y = np . array ( [ 3 , 4 , 5 , 7 , 9 , 13 , 15 , 19 , 23 ,
24 , 29 , 38 , 40 , 50 , 56 , 59 , 70 , 89 , 104 , 130 ] )

p l t . s c a t t e r (x , y )

We can visualize the data by calling the simpler command ‘plt.scatter’ which
will have a very similar effect to the blue marble picture we had of the first data
set.

Note that these data points do not seem to come from a line, so choosing
linear functions as the ‘hypothesis class’ in which to look for something close to
the ‘ground truth’ makes little sense. However, the points seem to be arrayed
on something resembling a parabola or, more generally, a power law fexp,ct =
ct · xexp.

In this case, we can do a simple trick before employing our known linear re-
gression method. Indeed, let us assume that the data points (xi, yi) are sampled
from a power law, i.e., that yi = ct ·xexp

i . Taking the natural logarithm on both
sides implies log yi = log ct+exp · log xi. This means that looking at the ‘log-log’
plot of the data, we are back to performing linear regression to determine exp
as the slop of the log-log data and log ct as the offset. Once we obtain these,
we can immediately find the ‘best’ interpolator within our ‘hypothesis class’ as
x 7→ elog ct · xexp.

x log = np . l og (x )
y log = np . l og (y )
p l t . s c a t t e r ( xlog , ylog , c o l o r=’ purple ’ )
p l t . x l ab e l ( ’ Log (x ) ’ )
p l t . y l ab e l ( ’ Log (y ) ’ )
p l t . t i t l e ( ’Log=Log Plot ’ )
p l t . show ( )
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Now we can recover our ‘best’ interpolating function using or custom slope
and offset finder method or any of the other options.

exponent , constant = g e t s l o p e a n d o f f s e t l s ( xlog , y log )
print ( exponent , constant )
p l t . p l o t (x , y , ’ o ’ )
p l t . p l o t (x , x** exponent*np . exp ( constant ) , ’ r ’ )
p l t . show ( )

As we can see, this is not a perfect interpolation (especially for the larger x
values), but still quite ‘close’.

Finally, let us illustrate another numerical technique, namely that of approx-
imating roots of a (continuous) function. We don’t need to go into Analysis
details here, but we are interested in functions that have the intermediate value
property. Say we have a real valued function f and some real numbers a and
b. If for every height h between f(a) and f(b) there exists some intermediate
input x ∈ [a, b] such that f(x) = h, then f is said to have the intermediate value
property. Note that if f is continuous, i.e., if we can draw its graph without
raising our pencil off the paper, then f will have this property.

So let us now consider such a function f and assume that we have some
real numbers a < b such that the signs of f(a) and f(b) are different (e.g.
f(b) < 0 < f(a)). Then, by the intermediate value property, we know there
must be some c ∈ [a, b] such that f(c) = 0. In other words, we know there is a
root of f in the interval [a, b]. The simplest technique to approximate this root
is called the bisection method. The idea behind it is simple. Take the midpoint
m = a+b

2 . Then either f(m) = 0 (and then we explicitly found the root), or
f(m) will have the same sign as either f(a) or f(b). If the sign is shared with
f(a), we can bisect again, but using the half-interval [m, b] instead of [a, b].
Otherwise we bisect again using the half-interval [a,m]. At each step the size
of the interval containing the root will be halved, so after n steps, we will have
found the root with precision at worse b−a

2n .
Here is a simple recursive implementation of the bisection method in Python.

def b i s e c t f o r r o o t ( f , a , b , t o l ) :
i f np . s i gn ( f ( a ) ) == np . s i gn ( f (b ) ) :

raise Exception ( ’ cannot b i s e c t , endpoints have same s i gn ’ )
m = (a+b)/2
i f np . abs ( f (m) ) < t o l :

return m
e l i f np . s i gn ( f (m) ) == np . s i gn ( f ( a ) ) :

return b i s e c t f o r r o o t ( f , m, b , t o l )
e l i f np . s i gn ( f (m) ) == np . s i gn ( f (b ) ) :

return b i s e c t f o r r o o t ( f , a , m, t o l )

Note that since we cannot always expect to find the exact root after a finite
number of steps, we have to instead specify a tolerance margin (‘tol’). The
output will be a number which is at most ‘tol’ away from the real root.
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We can use this method to approximate the square root of 2. Consider the
‘function handle’ defined via ‘lambda’ notation:

f = lambda x : x**2 =2

This simplify defines the polynomial x 7→ x2 − 2, the positive root of which
is clearly

√
2.

Calling

r = b i s e c t f o r r o o t ( f , 0 , 2 , 10**(=12))
print ( r )

will produce an approximation of
√
2 accurate to the first 12 decimal places by

iteratively bisecting the interval [0, 2]. We can compare this to the ‘actual’ (the
native approximation of Python) that is produced by

print (np . s q r t ( 2 ) )

Finally, there is a very general solver in the scipy package that can solve
for roots of a function or solutions to systems of equations using a variety of
well-optimized standard algorithms. This is the ‘fsolve()’ method. The way this
method operates is syntactically different from our bisection method. It does not
look for a root in a given interval, but around an initial guess. Note that the
closer the initial guess is to the initial value, the faster and the more accurate
the output of fsolve will be. We will use it to estimate

√
2 with an initial guess

of 1 for the root of x 7→ x2 − 2.

from s c ipy . opt imize import f s o l v e
r = f s o l v e ( f , 1 ) [ 0 ]
print ( r )
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