Numpy is a Python ‘library’ designed, at its core, as the name would sug-
gest, for performing numerical computations in a vectorized manner. We will
explore some of these features throughout this course, but this specific lecture
focuses on the more flexible indexing options offered by numpy over baseline
Python.

As usual, for working with numpy, we will need the standard import syntax,
¢ where the as np part of the command provides a local (inside the .py file)
'nickname’ for the numpy package.

The fundamental object class in numpy is the array class. Although the
declaration and construction of an array object is very similar to that of a list
in baseline Python, an array could be intuitively described as more structured.
Arrays are the equivalent of vectors, matrices and tensors (higher dimensional
matrices) in Python.

The following code

x = np.array ([[—5, 2, 0, —7],
[*17 97 37 8}7
[=3, —3, 4, 6]])

is a typical example of initializing an array x via the constructor method
np.array(). In this specific case, = will be a matrix with 3 rows and 4 columns.
Note that in terms of syntax, the object passed to the method np.array() is
essentially a list of lists (note the nested square brackets in the declaration)),
where the inner lists are the rows of the desired matrix and the outer list is just
a list of the ‘rows’.

As usual, we can call

print (x)

to inspect the matrix z. It is worth pointing out the visual distinction between
printing a list and an array. Namely, a list is printed with commas separating
the elements and no ellipsis is done in the printing (i.e., if you are printing a
long list, all the elements will be displayed). In contrast, the elements of an
array are separated by blank spaces and if the vector or matrix is too large to
display neatly in the print window, ellipsis dots will be used.

Baseline Python comes with what is called ‘basic’ indexing, i.e., indexing
by integers or by slices. One of the benefits of numpy is the flexibility of
having available ‘advanced’ indexing alongside ‘basic’ indexing. The main forms
of ‘advanced indexing’ are indexing by a list (or array) and logical indexing.
Additionally, numpy introduces higher dimensional structures (e.g. matrices
or tensors) which come with their own indexing particularities.

A simple example of basic indexing into a matrix would be something like

print (x[0,1])

which would return the value stored in = in row 0 and column 1, i.e., the value
2. Note that the same result is obtained by calling

print (x[(0,1)])

This is not accidental. In fact, whenever we index into a dimension 2 or higher
object, the indices used for indexing are actually interpreted as a tuple, since
the ordering of the dimensions matters. It is important to remember that in
Python row indices always come before column indices.

Another feature of indexing in Python in general is the fact that indexing
tuples are auto-completed with full slices (i.e., Python will pretend the missing
components of an indexing tuple are ‘:’). So

print (x[2])

)

will return ‘[-3 -3 4 6]’ (the second row), just as the command ‘print(x[2,:])
would.

If we want to use this short hand notation for columns, we can employ the
ellipsis operator (especially useful in dimensions 3 and higher). For example,

print (x[...,1])

would return the column of index 1 from z, i.e., {[2 9 -3]’. This also illustrates
the fact that the ‘native vector’ objector in numpy is the row vector. A column
vector is always interpreted as a list of rows with a single element.

An instance of indexing by a list (‘advanced’ indexing) would be

print (x[[0,1]])

This would return the first two rows of x (i.e., rows with indices 0 and 1 from
x). Contrast this case, where the indexing set is the list ‘[0,1]’, to the previous
case where the indexing was done with the tuple ‘(0,1)’.

As a general rule of thumb, in cases where we need to index into a list or array
and the indices we need to access are regular (e.g. they are in an arithmetic
progression or we need to take all the values from some point on or up to a
point), ‘basic’ indexing via slices should suffice. In cases where the index set is
irregular, for example if we have a list of consecutive numbers and we need to
access only the values that have prime indices, indexing by a list might be the
most efficient option. Since ‘advanced’ indexing is not available for baseline lists
in Python, this could imply converting to an array (by using the constructor
method ‘np.array()’) and converting the resulting array back to a list (using
the list constructor method ‘list()’).

Arguably the most important (and most common) usage of ‘advanced’ in-
dexing is logical indexing. Calling

print (x>0)

will return a logical array of the same size of z (the size of x can directly be
evaluated with the syntax ‘x.shape’) which will contain ‘True’ in the positions
where the corresponding value in x was strictly positive and the value ‘False’
everywhere else.

The utility of this is that the command

print (x[x>0])

will return a row array with only the positive values contained in x.
This can be used to update the values of = that satisfy a logical condition.
For example

x[x>0] =0

would set all the positive values in = to O.

One other aspect of arrays that is worth knowing is the fact that indexing
produces ‘images’ of the original array instead of new variable.
u=x[:,0]
x[0,0] =5
print (u)

With this code, u is the first column of z. But it is pointing to the same memory
as x. Indeed,

print (np.shares_memory (u, x))

will return the logical value ‘True’.

After we update the first entry in the first column of x to 5 (as opposed to
the original value —5), this update will be carried over to u as well, even though
u was ‘constructed’ before the change to x. Printing w will return the array ‘[5
-1 -3

This behavior can be avoided by the using the ‘copy()’ method. To see
this, replace the line ‘u = x[;, 0]’ from above with the command ‘u = x[:,
0].copy()’. A rather amusing observation is that the forcing of an instantiation
of a different variable (with different memory allocation) can also be achieved
(in the numerical entry case) by the command ‘u = x[:, 0] + 0’. However,
incrementation does not allocate new memory.

u=x[:,0]

print (np.shares_memory (u, x))
u+=0

print (np.shares_memory (u, x))
u=u-+0

print (np.shares_memory (u, x))

)

In this case, the first two print-outs will be ‘True’, but the last will be ‘False’.

