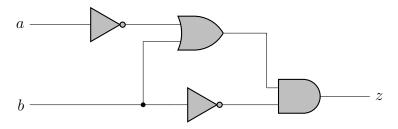
Basics of Information Systems


Winter Semester 2022–23

For discussion on Wednesday, November 2, 2022

- 1. Prove the following statements, referring to the axioms of Boolean algebra and, if applicable, elementary theorems from class:
 - (a) $(a \wedge b) \vee (a \wedge b') = a$
 - (b) $(a \wedge b') \vee b = a \vee b$
 - (c) $(a \lor b) \land (b \lor c) \land (a' \lor c) = (a \lor b) \land (a' \lor c)$
- 2. Derive and simplify a Boolean algebra expression for the following binary truth table:

a	b	c	z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

3. (a) Convert the following circuit diagram into a Boolean expression and simplify, if possible:

(b) Draw a circuit diagram implementing the following Boolean expression:

$$z = (a \land b' \land c) \lor (a' \land b) \lor (a \land c)'$$

- 4. Change the following decimal numbers to 8-bit two's complement integers, then express the binary numbers in hexadecimal:
 - (a) −12
 - (b) 56
 - (c) -128
 - (d) 148
- 5. Change sign of the following 8-bit two's complement numbers, then convert to decimal:
 - (a) 01110111
 - (b) 01110100
 - (c) 11111100
 - (d) 11001110