Wissenschaftliches Rechnen – Übungsaufgaben

Sommersemester 2025

19.05.2025

1. Sei $\|\cdot\|_X$ eine Norm auf $X = \mathbb{R}^n$ und $\|\cdot\|_Y$ eine Norm auf $Y = \mathbb{R}^m$. Die zugeordete Matrixnorm (oder Operatornorm) einer Matrix $A \in \operatorname{Mat}_{m,n}(\mathbb{R})$ ist gegeben durch

$$||A|| = \sup_{x \neq 0} \frac{||Ax||_Y}{||x||_X}.$$
 (*)

- (a) Überprüfen Sie, dass (*) wirklich eine Norm definiert.
- (b) Zeigen Sie, dass die Matrixnorm die kleinste reelle Zahl c ist, so dass

$$||Ax||_Y < c ||x||_X$$

für alle $x \in \mathbb{R}^n$.

- 2. Deuflhard/Hohmann, Aufgabe 2.8
- 3. (a) Zeige, dass die Matrix-2-Norm einer Matrix $A \in \operatorname{Mat}_n(\mathbb{R})$ gegeben ist durch den größten Singulärwert von, d.h.

$$||A||_2 = \max_i \sqrt{\lambda_i},$$

- wobei $\{\lambda_i\}$ die (immer nicht-negativen) Eigenwerte von A^TA sind. Man spricht daher auch von der "Spektralnorm".
- (b) Zeige am Beispiel, dass $||A||_2$ im Allgemeinen nicht mit den Eigenwerten von A selbst zusammenhängt.