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From 2D turbulence to MOLES

1. The closure problem

2. 2D single layer turbulence

3. Two-layer stratified turbulence
4. LES closures
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1. The closure problem

Rotating Boussinesq equations

u+V-(u@u)+2Qxu+p 'Vp=F + Du
V-u=0

Apply linear filter operation

Ou+V - (@eu)+2Qxu+p 'Vp=R(u)+F + Du

V-u=0

with eddy source term

Ru) =V -(uu) -V -(u®u)+ Du—Du
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2. Barotropic vorticity equation

O+ Vi V(¢ =F+ Di( + Dy
¢ = Ay

Inviscid undamped equation conserves energy and enstropy

E=/|Vz/)|2dx and Z:/|C|2dx

Fourier representation

1 P -q
O+ 5= D o Swla = Dilk) G+ Du(k) G+ Fi
k=p+q
Rate of energy transfer for mode k:

O,Ey, = > T(klpg) +2Di(k) Ei, + 2D, (k) Ei + Py
{p,q}: k+p+g=0

where




3. Resonant triad interactions (Fjortoft, 1953)

Resonant triad: kK +p+q =10

2 2

T'(plkq) = _Zz_—pg T(k|pq)

and

]{32 _ p2
T(qlkp) = E T(k|pq)

Energy transfer constraints

Suppose
p<k<gq

If center mode k loses energy, modes p and g gain energy, and vice versa

~) ~
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4. Folklore

Energy goes upscale

Enstrophy goes downscale

Questions

e Can we prove it?
e Under which conditions?
e And in the real ocean/atmosphere?




4.1. “Proof” 1: Transient dynamics of spectral peak

Mean of spectral distribution (“Energy wavenumber”)

1
ke = Ezk:kE(k)

Variance of spectral distribution

1= (k—k)’E(k)=2Z—-KE

k

Conservation of energy and enstrophy implies:

df dk?
 — _F_e
dt dt

As energy variance increases, the energy mean goes upscale




4.2. “Proof” 2: Infinite ranges

e Forcing scale £
e Infrared dissipation scale &;
e Ultraviolet dissipation scale k,

ki < ke < ky

Forcing/dissipation balance
e=¢+ey
n=kie=n+m
Since n; < k? ;, we estimate
nZm=kic—m=kie—kie>ki—k)e=(~1-k/k)n

Thus, 7, — 7 in the limit k; /k; — 0. Similarly, ¢; — ¢ when k¢/k, — 0.




5. Cascade picture for two-dimensional turbulence

Energy

g2/37.—5/3

=
P2
energy ﬁ
transfer ,72/ 33
£
stirrir:z:; A n /e
n T (F)

enstrophy
transfer

Wavenumber



6. Kolmogorov: Energy cascade

2K
Buan = [ S()dk=g(e.)
Rescaling time ¢ = T't" and space x = Lz’, we demand

Elld,zm = 9(5/7 Hl) Eg(l? 1)
sothate = L?T3¢, k = L' K/, and therefore

L2 62/3
Bl on) = T2 Bl =9(1,1) 7

Differentiating, we find
29(1,1) &3
3 K

S(k) — S(2k) =

so that

£2/3

S(/@):S(Zm+1/@)+m<1+ ! + = —i—)m = S(k) <

95/3 T 910/3




7. Kraichnan-Bachelor-Leith: Enstrophy cascade

2K
E[H’Qn] = / S(k) dk = g(n, Ii})
Rescaling time ¢t = 7't and space + = Lz’, we demand

Bl o =9, k) =g(1,1)
sothatn =T731/, k = L~! ', and therefore

12 /3 2/3
Blw2n) = T2 Bl ow = 9(1,1) 2 S(k) ~ cl_

Dissipation length scale

so that

1/6
k,o=CL

/2
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8. Limitations of the cascade picture

In reality

Forcing is not spectrally localized (baroclinic instability!)
Dissipation is not spectrally localized

Forcing is too close to the grid scale

Non-local triads can be significant




9. Baroclinic instability

Sloped isopycnals Hydrostatic balance




10. Two-layer QG as a model for ocean turbulence

Basic state: Uniform vertical shear

;:quil _ —Uy and ;quil —0
Eddy stream functions
Uy = —yU + 7Y and thy = 5tV

Eddy barotropic and baroclinic stream functions

eddy eddy
+ ¢
RS and 7=

Y=

2 2

and associated PVs




10.0.1. Two-layer QG, ctd.

0+ (0] + [rw] + 5 Qulg + A7) = L Dy —7) + Dyt

1
atw+[¢,w]+[r,q]+%8x(w+q+k§¢) = —§Di(@/1—7')+DuT+m'

Energies (by mode)

1 1
BV = =03 Kl and BT =03 (K k) |l
& k

Energies (kinetic and potential)

1 1
B = S (P nf)  and BT =SS Bk
k k
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10.0.2. Two-layer QG, numerical energy transfer rates

4 T T T T T T T

3l "\ rate of PE to PE tranfer
N




10.1. Energy transfers in two-layer geostrophic turbulence
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Graphics from Vallis (2005)




10.2. How does this apply to the ocean?

Upper ocean: N ~ 0.0025s7!, H ~ 4km, fy ~ 10~4s7!
Baroclinic Rossby radius: Lgq ~ 100 km

Most unstable scale: approx. 4 Lq ~ 400 km

Locally much smaller values possible

At wave numbers larger than k4, ageostrophic effects come in
At wave numbers around kq, eddy viscocity comes in

There are also surface modes, possibly higher baroclinic modes




11. Viscous parameterization (Leith)

Idea 1: Determine “eddy viscocity” v, such that a given dissipation wavenumber,
within the inertial range, maintains the rate of enstropy dissipation:

1/6
n
ke =C — 1/2

On the other hand, from barotropic vorticity equation,

1
§%C2 +5 V- (u?) = (A¢ + IR friction + forcing

= 1|V + 1 V- (V) + IR friction + forcing

Thus, area-mean-rate of enstropy dissipation n = v, (|V(|?)
Idea 2: Swap local and global values

v= () aweri = (£) 1v¢

— MOLES (Fox—Kemper and Menemenlis, 2008)




12.

Outlook

Discrete, small-stencil operators (WIP)

Backscatter (Stephan + Anton’s talks later)

Can we get off the cascade picture? (Non-local triads!)
Stochastic closures (M2 and others)

Wave-turbulence interaction (IDEMIX!)
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