Models of Weather and Climate

Summer Semester 2025, Exercise 1

Due Thursday, May 8, 2025

- 1. (From Kaper/Engler, Chapter 7, Exercises 2, 3.)
 - (a) Let $A: t \mapsto A(t)$ be a differentiable function defined on a neighborhood of t = 0whose values are real $n \times n$ matrices, and suppose that A(0) = I, the $n \times n$ identity matrix. Prove that

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\det A(t)\right)(0) = \mathrm{Tr}\,\frac{\mathrm{d}A}{\mathrm{d}t}(0)\,.$$

(b) Let ϕ_t be the flow of the initial value problem

$$\dot{x} = f(x) \,,$$

i.e., $x(t) = \phi_t(x_0)$ is a solution to the differential equation with $x(0) = x_0$. Assume, for simplicity, that $f \in C^2(\mathbb{R}^n, \mathbb{R}^n)$, and that the flow is defined on all of \mathbb{R}^n and for all positive times. Prove that, for all $x \in \mathbb{R}^n$,

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\det D\phi_t\right)(0) = \nabla \cdot f.$$

(c) Let $U \in \mathbb{R}^3$ be a measurable set. Apply the result from (b) to the Lorenz equations

$$\begin{split} \dot{x} &= -\sigma \left(x - y \right), \\ \dot{y} &= \rho \, x - y - x \, z \, , \\ \dot{z} &= -\beta \, z + x \, y \end{split}$$

to show that, for all t,

$$\frac{\mathrm{d}}{\mathrm{d}t}\operatorname{Vol}(\phi_t(U)) = -(\sigma + \beta + 1)\operatorname{Vol}(\phi_t(U)).$$

Use this result to explain why the attractor \mathcal{A} for the Lorenz equations cannot have a subset of positive volume.

2. Recall from class that the definition of the (leading) Lyapunov exponent λ implies the following. Suppose x(t) and y(t) are two solutions to the differential equation $\dot{x} = f(x)$. Write $\xi(t) \equiv x(t) - y(t)$ to denote their difference. Then

$$\|\xi(t)\| \approx e^{\lambda t} \|\xi(0)\|$$

so long as the initial perturbation $\xi(0)$ is small and t is not too large.

- (a) Use this property to estimate the leading Lyapunov exponent for the Lorenz system with standard parameters experimentally.
- (b) Suppose you are able to specify the initial condition with an error of 10⁻³. For how long do you expect you can predict the evolution of the system until the error in the solution exceeds 10% of its maximal value on the attractor? All errors are measured in the Euclidean norm in ℝ³.
- 3. Suppose you add the forcing term $\gamma \sin t$ to the x-component equation and $\gamma \cos t$ to the y-component equation. Determine experimentally whether $\langle x \rangle$, $\langle z \rangle$, and/or $\langle x^2 \rangle$ respond linearly to small changes in γ . How large can γ become before the response of the system is not smooth in γ ?