Algorithms and Data Structures

Summer Semester 2024

For discussion on Wednesday, May 15, 2022

. (GTG Exercise R-5.3) Modify the experiment from

https://github.com/mjwestcott/Goodrich/blob/master/ch05/experiment_list_size.py

in order to demonstrate that Python’s list class occasionally shrinks the size of its
underlying array when elements are popped from a list.

. (GTG Exercise R-5.7) Let A be an array of size n > 2 containing integers from 1 to
n — 1, inclusive, with exactly one repeated. Describe a fast algorithm for finding the
integer in A that is repeated.

. (GTG Exercise C-5.15) Consider an implementation of a dynamic array, but instead
of copying the elements into an array of double the size (that is, from N to 2N) when
its capacity is reached, we copy the elements into an array with [/N/4] additional cells,
going from capacity N to capacity N + [N/4]. Prove that performing a sequence of n
append operations still runs in O(n) time in this case.

. (From GTG Exercise C-5.19) Consider a shrink strategy in which an array of capacity
N is resized to capacity precisely that of twice the number of elements any time the
number of elements in the array goes strictly below N/4. Give a formal proof that
any sequence of n append or pop operations on an initially empty dynamic array takes
O(n) time.

. (GTG Exercise C-5.20) Consider a variant shrink strategy in which a dynamic array
of capacity N is resized to capacity precisely that of the number of elements, any time
the number of elements in the array goes strictly below N/2. Show that there exists a
sequence of n operations that requires 2(n?) time to execute.


https://github.com/mjwestcott/Goodrich/blob/master/ch05/experiment_list_size.py

