
Algorithms and Data Structures

Mock Exam

July 9, 2024

1. (a) Simplify the following Big-Oh resp. Big-Omega expressions as much as possi-
ble:

(i) O(log n) +O(n log n) +O((log n)4)

(ii) Ω(log n) + Ω(log log n) + Ω(log log log n)

(iii) O(1 + 2n+ 3n2 + 4n3)

(iv) O

(n∑
i=1

i2
)

(v) O(n) + Ω(n)

(b) What is the running time of the following code as a function of n? Give a
Big-Oh upper bound and a Big-Omega lower bound.

1 def idle(n):

2 r = 0

3 i = n

4 while i>0:

5 r += i

6 i = i// 2

7 return r

(10+5)

2. Is each of the following statements true or false? Explain your answer in 1–2
sentences.

(a) Python lists (i.e., dynamic arrays) can be used to efficiently implement a stack,
using L.append(e) and L.pop() for push and pop, respectively.

(b) Python lists (i.e., dynamic arrays) can be used to efficiently implement a queue,
using L.append(e) and L.pop(0) for enqueue and dequeue, respectively.

(c) A heap can be searched more efficiently than an unsorted array.

(d) A heap can be searched more efficiently than a sorted array.

(e) Breadth-first traversal of a binary tree takes worst-case O(1) time for each
node.

(2+2+2+2+2)

1

3. Give the pre-order, in-order, and post-order traversals of the following binary tree:

A

I

B H

G

C

E

F

D

(5)

4. Insert the keys 4, 9, 3, 7, 5, 6 into an initially empty heap. Show the heap at each
step of insertion. (5)

5. Insert the keys 4, 9, 3, 7, 5, 6 into an initially empty splay tree. Show the splay
tree at each step of insertion.

(You may consult the attached splay tree “cheat sheet”.) (5)

6. A function takes as input a list of integers L of length n and an integer value total.
It returns a tuple of elements from the list with sum total, if possible, and None

otherwise. Describe an algorithm that can do this in O(n log n) time. (5)

7. In the following, G is a graph in a “map of maps” representation. An example is
the following:

1 G = {’A’ : {’B’, ’E’, ’D’},

2 ’B’ : {},

3 ’C’ : {’B’, ’E’, ’F’},

4 ’D’ : {’B’},

5 ’E’ : {’D’},

6 ’F’ : {’A’, ’D’, ’E’}}

(a) Draw a representation of this graph in the plane.

(b) What does the following function do if it is executed on a graph G above?

1 def mystery_function(p):

2 for n in G[p]:

3 if n not in v:

4 v[n] = p

5 mystery_function(n)

6
7 v = {}

8 v[’A’] = None

9 mystery_function(’A’)

2

(c) What data structure is encoded in v if this code is run on a general graph G?

(d) If n=len(G), what is the running time of this algorithm? Give a Big-Oh
upper bound and a Big-Omega lower bound. Justify your answer using your
knowledge about the running time of the native Python dictionary operations.

(e) Sketch, using Python or Python-like pseudocode, a “breadth-first search”
(BFS) traversal of a graph of this type.

(2+3+2+3+5)

3

