Algorithms and Data Structures

Final Exam

July 30, 2024

1. (a) Order the following functions by their asymptotic growth rate:
n,expn, logn, exp(n?), log(logn), (logn)?

(b) An algorithm takes as input an n-element sequence of integers. It iterates
through all of its elements, executing an O(logn)-time computation if the
value of the current element is even, resp. an O(n)-time computation if the
value of the current element is odd. What are the best-case and worst-case
running times of the algorithm?

(¢) In the following, T is an instance of a standard binary tree class. It contains
n nodes. What does the following code do? What is its running time as a
function of n? Give a Big-Oh upper bound and a Big-Omega lower bound.

def do_something (T, p):
if p is not None:
do_something (T, T.left(p))
print (T.element (p))
do_someting (T, T.right(p))

N O O W N~

do_something (T, T.root())

(5+5+5)

2. Are the following statements true or false? Explain your answer in 1-2 sentences.

(a) A singly linked list can be used to implement a stack such that “push” and
“pop” execute in O(1)-time.

(b) A singly linked list can be used to implement a queue such that “enqueue”
and “dequeue” execute in O(1)-time.

(c) An AVL tree can be used to sort a list O(nlogn)-time.
(d) A heap can be used to sort a list in O(n logn)-time.
(e) A skip list can be used to sort a list in O(n logn)-time.

(24-2424+242)

3. Give the pre-order, in-order, and post-order traversals of the following binary tree:



()

. Insert the keys 6, 9, 4, 3, 5, 7 into an initially empty heap. Show the heap at each
step of insertion. (5)

. Insert the keys 6, 9, 4, 3, 5, 7 into an initially empty splay tree. Show the splay
tree at each step of insertion.
(You may consult the attached splay tree “cheat sheet”.) (5)

. Describe an algorithm that takes an undirected, connected graph G = (V, E) as
input and returns True if the graph is a tree and False otherwise. (5)

. Consider the following greedy strategy for finding a shortest path from vertex start
to vertex goal in a given connected graph.
(a) Initialize path to start.
(b) Initialize set visited to {start}.
) If start=goal, return path and exit. Otherwise, continue.
)

Find the edge (start, v) of minimum weight such that v is adjacent to start
and v is not in wvisited.

(e) Add v to path.
(f) Add v to visited.
(g) Set start equal to v and go to step (c).

Does this greedy strategy always find a shortest path from start to goal? Either
explain intuitively why it works, or give a counterexample. (5)



