
Algorithms and Data Structures

Mock Exam

July 12, 2022

1. (a) Order the following functions by their asymptotic growth rate:

n2 + n4, n2 log n, n2, (log n)2, n3, (log n)3

(b) An algorithm executes an O(log n)-time computation for each entry of an n-
element sequence. Give a Big-Oh upper bound and a Big-Omega lower bound
on its running time.

(c) Give the best possible Big-Oh upper bound for the running time of the fol-
lowing Python function which takes as input two Python lists A and B with
respective lengths n and m.

1 def mystery_function (A,B):
2 i = 0
3 j = 0
4 while i<len(A) and j<len(B):
5 if A[i]==B[j]:
6 return True
7 elif A[i]<B[j]:
8 i += 1
9 else:

10 j += 1
11 return False

(d) What is mystery_function good for? State, if necessary, conditions on the
input arrays A and B that make mystery_function perform useful work.

(5+5+5+5)

2. Is each of the following statements true or false? Explain your answer in 1–2
sentences.

(a) One can implement a stack based on a linked list such that each push or pop
operation completes in O(1)-time.

(b) One can implement a stack based on a dynamic array such that each push or
pop operation completes in O(1)-time.

(c) It is possible to append a linked list to another in O(1)-time.
(d) Heap-sort is always faster then insertion-sort.

1

(e) Heap-sort is faster than insertion-sort when the input is a list containing n
copies of the same number.

(2+2+2+2+2)

3. (a) The nodes of a complete binary tree have keys that represent their position in
a breadth-first traversal of the tree. Argue that this tree is a heap.

(b) Give a pseudo-code (or Python) representation of the breadth-first traversal
of a tree with an auxiliary queue.

(c) Argue that the run-time of this algorithm is O(n), where n is the number of
nodes in the tree.

(d) Alternatively, you can process the nodes of this tree breadth-first by repeatedly
calling the remove_min method of the heap. Does this algorithm also run in
O(n) time? Explain!

(5+5+5+5)

4. Attached is an excerpt of a code listing for a buggy implementation of a priority
queue with a binary heap.

(a) Draw an example of a heap with exactly 5 nodes so that a call to remove_min
produces an invalid heap.

(b) Identify the part of the code that is buggy. Explain!
Hint: The functions _parent to _has_right which implement the index arith-
metic are correct, you do not need to look there.

(c) Fix the bug.
(d) Rewrite the function _upheap to use a loop instead of recursion.

(5+5+5+5)
1 class HeapPriorityQueue (PriorityQueueBase):
2
3 def _parent (self , j):
4 return (j-1) // 2
5
6 def _left(self , j):
7 return 2*j + 1
8
9 def _right (self , j):

10 return 2*j + 2
11
12 def _has_left (self , j):
13 return self._left(j) < len(self._data)
14
15 def _has_right (self , j):
16 return self. _right (j) < len(self._data)
17
18 def _swap(self , i, j):
19 """ Swap the elements at indices i and j of array."""
20 self._data[i], self. _data[j] = self._data[j], self._data[i]

2

21
22 def _upheap (self , j):
23 parent = self. _parent (j)
24 if j > 0 and self._data[j] < self._data[parent]:
25 self._swap(j, parent)
26 self. _upheap (parent)
27
28 def _downheap (self , j):
29 if self. _has_left (j):
30 left = self._left(j)
31 small_child = left
32 if self. _has_right (j):
33 right = self. _right (j)
34 if self._data[right] < self._data[left]:
35 small_child = right
36 self._swap(j, small_child)
37 self. _downheap (small_child)
38
39 def __init__ (self):
40 """ Create a new empty Priority Queue."""
41 self._data = []
42
43 def __len__ (self):
44 """ Return the number of items in the priority queue."""
45 return len(self._data)
46
47 def add(self , key , value):
48 """ Add a key -value pair to the priority queue."""
49 self._data. append (self._Item(key , value))
50 self. _upheap (len(self._data) - 1)
51
52 def min(self):
53 """ Return but do not remove (k,v) tuple with minimum key.
54
55 Raise Empty exception if empty.
56 """
57 if self. is_empty ():
58 raise Empty(’Priority queue is empty.’)
59 item = self._data[0]
60 return (item._key , item. _value)
61
62 def remove_min (self):
63 """ Remove and return (k,v) tuple with minimum key.
64
65 Raise Empty exception if empty.
66 """
67 if self. is_empty ():
68 raise Empty(’Priority queue is empty.’)
69 self._swap(0, len(self._data) - 1)
70 item = self._data.pop ()
71 self. _downheap (0)
72 return (item._key , item. _value)

5. Write an algorithm min_list, in pseudo-code or in Python, that returns a list with
the values of all nodes of a heap whose key is identical to the minimal key. (10)

3

