The Matrix Inverse

Marcel Oliver

Finite Mathematics, Spring 2020

1 Properties of the Matrix Inverse

Given a matrix $A \in M(n \times n)$, its inverse A^{-1} is the unique matrix with the property

$$
A A^{-1}=I=A^{-1} A .
$$

Recall the following identities:
(i) $\left(A^{-1}\right)^{-1}=A$
(ii) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(iii) $(A B)^{-1}=B^{-1} A^{-1}$

Moreover, if A is invertible then the solution to the system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ can be written

$$
\boldsymbol{x}=A^{-1} \boldsymbol{b} .
$$

This observation tells us how we can compute the matrix inverse once we know how to solve linear equations. We begin by writing \boldsymbol{b} as a linear combination of the standard unit vectors $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$,

$$
\boldsymbol{b}=b_{1} \boldsymbol{e}_{1}+\cdots+b_{n} \boldsymbol{e}_{n} .
$$

Then

$$
\begin{aligned}
\boldsymbol{x} & =A^{-1}\left(b_{1} \boldsymbol{e}_{1}+\cdots+b_{n} \boldsymbol{e}_{n}\right) \\
& =b_{1} A^{-1} \boldsymbol{e}_{1}+\cdots+b_{n} A^{-1} \boldsymbol{e}_{n} \\
& =\left(\begin{array}{ccc}
\mid & & \mid \\
A^{-1} \boldsymbol{e}_{1} & \cdots & A^{-1} \boldsymbol{e}_{n} \\
\mid & & \mid
\end{array}\right) \boldsymbol{b} .
\end{aligned}
$$

Notice that the vectors $\boldsymbol{x}_{1}=A^{-1} \boldsymbol{e}_{1}, \ldots \boldsymbol{x}_{n}=A^{-1} \boldsymbol{e}_{n}$ are the columns of A^{-1}. At the same time, we see that these vectors are the solutions to the n linear equations

$$
A \boldsymbol{x}_{1}=\boldsymbol{e}_{1}, \quad \cdots, \quad A \boldsymbol{x}_{n}=\boldsymbol{e}_{n}
$$

To find A^{-1}, we therefore have to simultaneously solve n inhomogeneous linear equations, which is the essence of the following procedure.

2 Computing the inverse

Form the augmented matrix

Write the matrix A to the left, and the identity matrix to the right. For example, when

$$
A=\left(\begin{array}{ccc}
0 & \frac{1}{2} & -\frac{1}{2} \\
1 & 0 & 1 \\
2 & \frac{1}{2} & 1
\end{array}\right)
$$

write

$$
M=\left(\begin{array}{ccc|ccc}
0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & \frac{1}{2} & 1 & 0 & 0 & 1
\end{array}\right)
$$

Reduce to row-echelon form

Use elementary row transformations on the augmented matrix to bring the lefthand matrix into row echelon form.

- If you can obtain the identity matrix in the left-hand block, the matrix is invertible and the final right-hand block is A^{-1}.
- If you obtain a row of zeros in the left-hand block, i.e. if $\operatorname{rank} A<n$, then A is not invertible.

Let's work out the example:

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & \frac{1}{2} & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\text { reorder rows }}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
2 & \frac{1}{2} & 1 & 0 & 0 & 1 \\
0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0
\end{array}\right) \xrightarrow{\mathrm{R} 2-2 \mathrm{R} 1 \rightarrow \mathrm{R} 2} \\
& \left(\begin{array}{ccc|ccc|cc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & \frac{1}{2} & -1 & 0 & -2 & 1 \\
0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0
\end{array}\right) \xrightarrow{\mathrm{R} 3-\mathrm{R} 2 \rightarrow \mathrm{R} 3}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{2} & -1 & 0 \\
\hline
\end{array}\right) \\
& 0
\end{aligned} 0
$$

Check your solution

We see that

$$
A^{-1}=\left(\begin{array}{ccc}
-2 & -3 & 2 \\
4 & 4 & -2 \\
2 & 4 & -2
\end{array}\right)
$$

and it is easy to check that

$$
A A^{-1}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & -\frac{1}{2} \\
1 & 0 & 1 \\
2 & \frac{1}{2} & 1
\end{array}\right)\left(\begin{array}{ccc}
-2 & -3 & 2 \\
4 & 4 & -2 \\
2 & 4 & -2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I
$$

