Date Reading Topics
Tue, 4. Feb. 2020 Lecture Notes (Sloughter)
Lecture Notes (Folland)
Review of Fundamental Theorem of Calculus, Taylor’s theorem
Fri, 7. Feb. 2020 Lecture Notes (Levermore)
Notes, Sect. 11 (Ramakrishnan)
Uniform convergence, power series (start)
Tue, 11. Feb. 2020 (ctd.) Power series (ctd.)
Fri, 14. Feb. 2020 Kantorovitz 1.1-1.3 (in parts) Metric space review, compactness, normed vector spaces
Tue, 18. Feb. 2020 Rudin, 9.7, 9.8
Kantorovitz, 2.1
Linear maps, the derivative
Fri, 21. Feb. 2020 (ctd.) Chain rule, directional derivative, gradient
Tue, 25. Feb. 2020 Kantorovitz 2.2 Higher derivatives
Fri, 28. Feb. 2020 Kantorovitz 3.2, 3.3
Rudin, 9.24, 9.28
Inverse and implicit function theorems
Tue, 3. Mar. 2020 (ctd.) Inverse and implicit function theorems (ctd.)
Fri, 6. Mar. 2020 Kantorovitz 3.4 Lagrange multipliers
Tue, 10. Mar. 2020 Kantorovitz 3.5 Applications
Fri, 13. Mar. 2020
Review for Mock Midterm Exam
Tue, 17. Mar. 2020
Mock Midterm Exam
Fri, 20. Mar. 2020 Kantorovitz 4.1 Partial integrals
Tue, 24. Mar. 2020 (ctd.) Changing order of integration
Fri, 27. Mar. 2020 Kantorovitz 4.2 Integration on general domains
Tue, 31. Mar. 2020 (ctd.) Change of variables, polar, spherical, and cylinder coordinates
Fri, 3. Apr. 2020 Kantorovitz 4.3 Line integrals
Tue, 14. Apr. 2020 (ctd.) Conservative fields, exact differentials, potentials
Fri, 17. Apr. 2020 Kantorovitz 4.4 Green’s theorem in two dimensions
Tue, 21. Apr. 2020 Kantorovitz 4.5 Surface integrals
Fri, 24. Apr. 2020 (ctd.) Divergence theorem
Tue, 28. Apr. 2020 TBA Fourier Integrals
Tue, 5. May 2020 TBA Applications to linear PDEs of mathematical physics
Fri, 8. May 2020
(ctd.)
Tue, 12. May 2020 TBA Outlook on complex analysis
Fri, 15. May 2020
Review for Final Exam