Advanced Calculus and Methods of Mathematical Physics

Homework 4

Due in class Tuesday, March 3, 2020

Note: Assignments marked (*) will not be graded. Do not turn them in. However, they will be discussed in the tutorial and example solutions will be made available.

1. *(Kantorovitz, p. 78, Exercise 6.) Let $f: \mathbb{R}^k \to \mathbb{R}^m$ be defined by

$$f(x) = \sum_{i=1}^{k} (x_i, x_i^2, \dots, x_i^m).$$

Compute the derivative df(x).

2. *(Kantorovitz, p. 78, Exercise 8.) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable on $\mathbb{R}^2 \setminus \{0\}$. Let

$$h(r,\theta) = (r\,\cos\theta, r\,\sin\theta)$$

denote the change from polar to Cartesian coordinates and set $g = f \circ h$. Prove that, for r > 0,

$$\|(\nabla f) \circ h\|^2 = \left(\frac{\partial g}{\partial r}\right)^2 + \left(\frac{1}{r}\frac{\partial g}{\partial \theta}\right)^2$$

3. *(Kantorovitz, p. 79, Exercise 9.) Prove or disprove the differentiability of the following function $f : \mathbb{R}^2 \to \mathbb{R}$ at (0, 0).

(a)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{\|(x,y)\|} & \text{when } (x,y) \neq (0,0) ,\\ 0 & \text{when } (x,y) = (0,0) . \end{cases}$$

(b) $f(x,y) = (xy)^{2/3}$

4. Show that the function

 $u(x) = \ln \|x\|$

solves the Laplace equation

$$\Delta u = 0$$

on $\mathbb{R}^2 \setminus \{0\}$.

5. Let V and W be normed vector spaces and $f: V \to W$ be continuously differentiable and homogeneous of degree $\alpha > 0$, i.e., for every $x \in V$ and t > 0,

$$f(tx) = t^{\alpha} f(x) \,.$$

Show that

$$\mathrm{d}f(x)x = \alpha f(x) \,.$$

6. Let V be a normed vector space, $E \subset V$ open, and $f: E \to \mathbb{R}$ differentiable on E. Suppose that f has a local maximum at some point $x \in E$. Show that, for every $\boldsymbol{v} \in V$,

$$D_{\boldsymbol{v}}f(x) = 0\,.$$

Remark: If $V \in \mathbb{R}^n$, this implies that

$$\nabla f(x) \equiv (\partial_1 f(x), \dots, \partial_n f(x)) = 0.$$

7. Let V and W be normed vector spaces and let $A: V \to W$ and $B: W \to V$ be bounded linear operators. Furthermore, suppose that

$$||I - BA||_{L(V)} < 1.$$

(a) Show that $F: L(W, V) \to L(W, V)$, defined for every $X \in L(W, V)$ by

$$FX = X + B - BAX,$$

is a contraction.

(b) Conclude that F has a fixed point X^* . State an upper bound for the operator norm $||X^*||_{L(W,V)}$.