Analysis II

Homework 4

Due in class Monday, March 4, 2019

- 1. Let $f \colon \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Consider the sequence of left translates $f_n(x) = f(x+n)$, where $n \ge 1$. Prove that f_n converges uniformly on $[0, \infty)$ to the constant function c if and only if $\lim_{x\to\infty} f(x) = c$.
- 2. Test the following series for uniform convergence on \mathbb{R} :

(a)
$$\sum_{n=1}^{\infty} \frac{x}{(n+x^2)^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$$

3. Let $f(x, y) = y^3 e^{-y^2 x}$ and define

$$\phi(y) = \int_0^\infty f(x, y) \, \mathrm{d}x \, .$$

(a) Show that, at y = 0,

$$\phi'(y) \neq \int_0^\infty \frac{\partial f}{\partial y}(x,y) \, \mathrm{d}x \, .$$

- (b) Which condition in the theorem from class on the interchange of differentiation and integration is violated?
- 4. Which of the following sequences of functions is equicontinuous on \mathbb{R} ? Prove or disprove: (a) $f_n(x) = \sin(nx)$, (b) $f_n(x) = \sin(nx)/n$.
- 5. (Rudin, Exercise 7.16.) Suppose $\{f_n\}$ is an equicontinuous sequence of functions on a compact set K, and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K.
- 6. (Rudin, Exercise 7.18.) Let $\{f_n\}$ be a uniformly bounded sequence of functions which are Riemann-integrable on some interval [a, b] and define, for $x \in [a, b]$,

$$F_n(x) = \int_a^x f_n(t) \,\mathrm{d}t \,.$$

Prove that there exists a subsequence $\{F_{n_k}\}$ which converges uniformly on [a, b].