Analysis II

Homework 3

Due in class Monday, February 25, 2019

- 1. Let X be a metric space and $E \subset X$. We say that $x \in X$ is a boundary point of E if every neighborhood of x contains at least one point in E and at least one point in E^c . The set of all boundary points of E is denoted ∂E . Prove the following.
 - (a) $E \setminus \partial E$ is open.
 - (b) $E \cup \partial E$ is closed.
 - (c) ∂E is closed.
- 2. Let X be a set. Define, for all $x, y \in X$, the "trivial metric"

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \,, \\ 1 & \text{if } x \neq y \,. \end{cases}$$

- (a) Show that d is indeed a metric.
- (b) Show that in this metric space, every subset $E \subset X$ is both open and closed.
- 3. Show that the union of a finite number of compact subsets of a metric space X is compact.
- 4. Let X be a metric space and $K \subset X$ compact. Let $\{G_{\alpha}\}$ be an open cover of K. Show that there exists $\lambda > 0$ such that for every $E \subset K$ with diam $E \leq \lambda$ there exists an index α such that $E \subset G_{\alpha}$.
- 5. Let $E \subset \mathbb{R}$ be bounded and $f: E \to \mathbb{R}$ be uniformly continuous. Show that f is bounded on E.
- 6. Let X, Y be metric spaces and $f: X \to Y$ continuous. Show that f(K) is compact if K is compact.