Applied Differential Equations and Modeling

Homework 6

Due in class Tuesday, March 19, 2019

1. For each of the following matrices,

- find the eigenvalues and eigenvectors, if necessary a generalized eigenvector,
- write out the general solution for the homogeneous linear differential equation

$$x' = Ax$$
,

• sketch the phase portrait of the differential equation.

(a)
$$A = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$$

2. For each of the following problems, find the solution of the given initial value problem. Draw the trajectory of the solution in the x_1 - x_2 plane and also draw the component plots of x_1 versus t and of x_2 versus t.

(a)
$$\mathbf{x}' = \begin{pmatrix} 1 & -5 \\ 1 & -3 \end{pmatrix} \mathbf{x}$$
, $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
(b) $\mathbf{x}' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} \mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

- 3. For each of the following systems of differential equations,
 - find the equilibrium solution,
 - describe how the system behaves in the vicinity of the equilibrium solution,
 - sketch the phase portrait.

(a)
$$x' = -x + y + 1$$
,
 $y' = x + y - 3$

- (b) x' = -x 4y 4, y' = x - y - 6
- 4. Describe how the nature of the eigenvalues depends on the parameter α in the matrix

$$A = \begin{pmatrix} 2 & \alpha \\ 1 & -3 \end{pmatrix} \,.$$