Applied Differential Equations and Modeling

Homework 5

Due in class Tuesday, March 12, 2019

1. Compute the determinant and the inverse, if possible, of each of the following matrices.

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix}$$

(b) $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$
(c) $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ -2 & 1 & 8 \\ 1 & -2 & -7 \end{pmatrix}$

- 2. Find the general solution of the given set of equations, or else show that there is no solution.
 - (a) $2x_1 + x_2 + x_3 = 2$ $-x_1 + x_3 = 1$ $x_1 + x_2 + 2x_3 = 3$
 - (b) $2x_1 + x_2 + x_3 = 0$ $-x_1 + x_3 = -1$ $x_1 + x_2 + 2x_3 = 1$ (c) $x_1 - x_2 + x_3 + x_4 = -1$ $x_2 + x_3 + 3x_4 = 2$ $x_1 + 2x_3 + 4x_4 = 1$ $x_2 + x_3 + 3x_4 = 2$
- 3. Find all eigenvalues and eigenvectors for each of the following matrices. If possible, find a matrix \boldsymbol{S} and a diagonal matrix \boldsymbol{D} such that

$$oldsymbol{A} = oldsymbol{S}oldsymbol{D}oldsymbol{S}^{-1}$$
 .

(a)
$$\mathbf{A} = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}$$

(b) $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix}$
(c) $\mathbf{A} = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}$