Applied Differential Equations and Modeling

Homework 1

Due in class Monday, February 11, 2019

- 1. For each of the following,
 - (a) Draw a direction field for the given differential equation
 - (b) Based on the inspection of the direction field, describe how solutions behave for large t.
 - (c) Find the general solution of the given differential equation, and use it to determine how solutions behave as $t \to \infty$.

$$2y' + y = 3t \tag{1}$$

$$ty' - y = t^2 \mathrm{e}^{-t} \tag{2}$$

2. Find the solution of the given initial value problem.

(a)
$$y' - y = 2te^{2t}$$
, $y(0) = 1$
(b) $ty' + 2y = t^2 - t + 1$, $y(1) = \frac{1}{2}$, $t > 0$
(c) $ty' + 2y = \sin t$, $y(\pi/2) = 1$, $t > 0$
(d) $y' = (e^{-x} - e^x)/(3 + 4y)$, $y(0) = 1$

3. In each of the following problems, find the critical value for the initial value a where the solution changes from going to $-\infty$ as $t \to \infty$ to going to ∞ as $t \to \infty$.

(a)
$$y' - \frac{1}{2}y = 2\cos t$$
, $y(0) = a$

(b)
$$2y' - y = e^{t/3}$$
, $y(0) = a$

4. Solve the initial value problem

$$y' = 2y^2 + xy^2, \quad y(0) = 1$$

and determine where the solution attains its minimum value.