Differential Equations

Homework 3

Due in class Tuesday, March 6, 2018

- 1. Recall that the ω -limitset of an orbit $\gamma(x)$ originating at a phase point x is the set of all accumulation points of the *forward* orbit $\gamma^+(x)$. I.e., $y \in \omega(\gamma)$ if there exists a sequence $t_n \to \infty$ such that $\phi_{t_n}(x) \to y$.
 - (a) Prove that $\omega(\gamma)$ is closed and invariant.
 - (b) If the forward orbit is bounded, then $\omega(\gamma)$ is compact, non-empty, and connected.
- 2. Recall the Poincaré–Bendixon Theorem (the proof will be finished during the next class meeting): For an autonomous differential equation in the plane, suppose a forward orbit $\gamma^+(x)$ is bounded and $\omega(\gamma)$ contains no critical points. Then $\omega(\gamma)$ is either a periodic orbit, equal to $\gamma(x)$, or a limit cycle so that $\omega(\gamma) = \overline{\gamma^+(x)} \setminus \gamma^+(x)$.

In this setting, prove the following: Suppose γ_1 and γ_2 are two periodic orbits with γ_2 in the interior of γ_1 . Suppose further that there are no critical points or periodic orbits in the annular region A between γ_1 and γ_2 . Show that, for $x \in A$, $\omega(\gamma(x))$ is either γ_1 or γ_2 . Show further that the ω -limitset is the same for all orbits in A.

3. Consider the system

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = a x_1 + b x_2 - x_1^2 x_2 - x_1^3.$

Show that there cannot be a periodic orbit unless b > 0.

4. Show that the van der Pol equation

$$\dot{x}_1 = x_2 ,$$

 $\dot{x}_2 = -x_1 + \lambda (1 - x_1^2) x_2$

has a non-trivial period orbit for all $\lambda \in \mathbb{R}$.