1. Solve the differential equation

$$2y' + ty = 2$$
, $y(0) = 1$.

(10)

The integrating factor is $M = e^{\frac{1}{2}} \int t dt = e^{\frac{t^2}{4}}$

 $\Rightarrow \frac{d}{dt}(e^{t^{2}/4}y) = e^{t^{2}/4}$

 $\Rightarrow e^{\frac{2}{4}}y(t) = \int_{0}^{t} e^{\frac{-2}{4}} d\tau$

=> $y(t) = e^{-t/4}y(0) + e^{-t/4}\int_{0}^{t} e^{-t/4}dt$

 $= e^{-t^{2}/4} + e^{-t^{2}/4} \int_{0}^{t} e^{-t^{2}/4} d\tau$

The integral cannot be evaluated in closed form, so this is the final answer.

2. (a) Solve the differential equation

$$y' = (1 - 2t) y^2, y(0) = -1.$$

(b) For which interval of time does the solution exist?

(5+5)

(a)
$$\frac{dy}{y^2} = (1-2t) dt$$

$$\Rightarrow \int \frac{dy}{y^2} = \int (1-2t) dt$$

$$=> -\frac{1}{y} \left| \frac{y(t)}{-1} \right| = t - t^2$$

$$=> -\frac{1}{y(t)} - 1 = t - t^2$$

$$= \frac{1}{y(t)} = -1 - t + t^2$$

=>
$$y(t) = \frac{1}{t^2 - t - 1}$$

(b) The solution has a vertical asymptote when $t = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \pm \frac{\sqrt{5}}{2},$

so the solution of the initial value problem exists for $-1 \le t < \frac{1}{2} + \frac{15}{2}$. (Or, if allowing backward evolution, on the interval $(\frac{1}{2} - \frac{15}{2}, \frac{1}{2} + \frac{15}{2})$.)

3. Consider the differential equation

$$y'=y^2-y.$$

- (a) Find all equilibrium points of the equation.
- (b) Classify each equilibrium point as stable or unstable.
- (c) Indicate the equilibrium points in a t-y graph and sketch several other solutions without solving the equation.
- (d) For which values of y(0) does the solution exist for all positive times? (Argue, if possible, without solving the equation.)

(5+5+5+5)

- (a) $y^2 y = 0 \Rightarrow y = 0$ or y = 1
- (b) At y=0, RHS changes from + to \Rightarrow it is stable y=1, RHS " = to + => it is unstable

(d) We know that the equation $y'=y^2$ has blow-up in finite time (example from class). Since, for $y' = y^2$ has blow-up, the term y^2 dominates (e.g. if $y \ge 2$) then $y^2 - y \ge \frac{1}{2}y^2$ so that $y' \ge \frac{1}{2}y^2$ which also blows up), the solution exists for all $t \ge 0$ if and only if $u(0) \le 1$, i.e., is in or at the boundary of the stable region.

- 4. (a) Compute, without using the table of Laplace transforms, the Laplace transform of f(t) = u(t-1), where u is the unit step function.
 - (b) Find the inverse Laplace transform of

$$F(s) = \frac{s}{(s-1)^2 + 1}.$$

You may use the table of Laplace transforms.

(5+5)

(a)
$$F(s) = \int_{0}^{\infty} e^{-st} u(t-1) dt$$

$$= \int_{0}^{\infty} e^{-st} dt = \frac{1}{-s} e^{-st} \Big|_{1}^{\infty} = \frac{e^{-s}}{s}$$

(b)
$$F(s) = \frac{s-1}{(s-1)^2 + 1} + \frac{1}{(s-1)^2 + 1}$$

 $\downarrow (23)$ $\downarrow (22)$
 $\Rightarrow f(s) = e^{t} \cot t + e^{t} \sin t$

5. Verify the following property of the Laplace transform:

$$\mathcal{L}[f'(t)] = s\,\mathcal{L}[f(t)] - f(0)$$
 .

(10)

$$\mathcal{L}[f'(t)] = \int_{0}^{\infty} e^{-st} f'(t) dt$$

I.b.p.
$$e^{-st}$$
 $f(t) \Big|_{0}^{\infty} - \int_{0}^{\infty} (-s)e^{-st} f(t) dt$

Dunder suitable decay assumptions on f.

6. (a) Use the Laplace transform to solve the equation

$$y'' + y = \delta(t)$$
, $y(0) = y'(0) = 0$.

(b) Use the Laplace transform to solve the equation

$$y'' + y = \delta(t - 2\pi)$$
 , $y(0) = y'(0) = 0$.

(c) What happens for

$$y'' + y = \delta(t) + \delta(t - 2\pi) + \delta(t - 4\pi) + \delta(t - 6\pi) + \dots$$

again with y(0) = y'(0) = 0? Describe the features of the solution *in words*, using technical terms when applicable. (No formula required, but permitted.)

(10+5+5)

(a)
$$S^{2} Y(S) + Y(S) = 1$$

=> $Y(S) = \frac{1}{S^{2} + 1}$
=> $Y(t) = 2int$ by formula (13) for $t > 0$

(b)
$$s^{2} Y(s) + Y(s) = e^{-2\pi s}$$

 $\Rightarrow Y(s) = e^{-2\pi s} \frac{1}{s^{2}+1}$

=>
$$y(t) = u(t-2\pi)$$
 sin $(t-2\pi) = u(t-2\pi)$ sin t

(c) Following the same pattern, and using the superposition principle,

$$y(t) = sin(t) \left(U(t) + U(t-2\pi) + U(t-4\pi) + \right)$$

i.e., it's a sin-function whose amplitude is an infinite staircase. This is an example of resonance.

7. Consider the second order differential equation

$$y'' + 2y' + y = g(t).$$

- (a) Write this equation as a system of two first-order equations in matrix form with matrix A.
- (b) Compute the eigenvalues of A.
- (c) Compute the eigenvector(s) and, if applicable, generalized eigenvector of A.
- (d) Write out the general solution x(t) for the homogeneous (the case when g(t) = 0) first order system from part (a).
- (e) Write out the general solution y(t) for the given homogeneous second order equation.
- (f) Sketch the qualitative behavior of the homogeneous equation in the y-y' phase plane.
- (g) Use the method of undetermined coefficients to find a particular solution when $g(t) = \cos t$.
- (h) Continuing the problem from (g), write out the solution with initial condition y(0) = 0 and y'(0) = 1.
- (i) Re-derive your answer to part (h) using the Laplace transform.
- (j) What is the impulse response function of this system?
- (k) Is the system BIBO-stable? Show your computation.
- (l) What is the equation a model of? Describe in words.

(5 points each)

Answer:

(a)
$$\dot{x} = Ax + f$$
 with $A = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$ and $f = \begin{pmatrix} 0 \\ g \end{pmatrix}$.

- (b) The characteristic equation $\det(A \lambda I) = 0$ reads $\lambda(2 + \lambda) + 1 = 0$, which has a double root $\lambda = -1$.
- (c) $(A \lambda I)\mathbf{v} = 0$ is solved by $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Since there is no second linearly independent eigenvector, there must be a generalized eigenvector which solves $(A \lambda I)\mathbf{w} = \mathbf{v}$. The choice $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is a possible generalized eigenvector.
- (d) $x(t) = c_1 v e^{-t} + c_2 (v t + w) e^{-t}$
- (e) $y_h(t) = c_1 e^{-t} + c_2 t e^{-t}$
- (f) See separate sheet.

- (g) Let's make the ansatz $y(t) = A \sin t + B \cos t$. Then $y'(t) = A \cos t B \sin t$ and $y'' = -A \sin t B \cos t$. This leads to the system of linear equations -A 2B + A = 0 and -B + 2A + B = 1, so that B = 0 and $A = \frac{1}{2}$. So the particular solution is $y_p(t) = \frac{1}{2} \sin t$.
- (h) The solution is of the form $y(t) = y_h(t) + y_l(t)$. From (g), we have $y_p(0) = 0$ and $y_p'(0) = \frac{1}{2}$. So we need $y_h(0) = 0$ and $y_h'(0) = \frac{1}{2}$ so that y satisfies the given initial conditions. From (c) or (d): $y_h'(t) = -c_1 e^{-t} + c_2 e^{-t} c_2 t e^{-t}$. Thus, $y_h(0) = c_1$ and $y_h'(0) = -c_1 + c_2$. We conclude that $c_1 = 0$ and $c_2 = \frac{1}{2}$. Altogether,

$$y(t) = \frac{1}{2} t e^{-t} + \frac{1}{2} \sin t$$
.

(i) Taking the Laplace transform of the equation, we find that

$$s^2 Y(s) - 1 + 2 s Y(s) + Y(s) = \frac{s}{s^2 + 1},$$

so that

$$Y(s) = \frac{1}{(s+1)^2} + \frac{s}{(s+1)^2(s^2+1)}.$$

Noting the partial fraction decomposition

$$\frac{s}{(s+1)^2(s^2+1)} = -\frac{1}{2}\frac{1}{(1+s)^2} + \frac{1}{2}\frac{1}{1+s^2},$$

we find that

$$Y(s) = \frac{1}{2} \frac{1}{(s+1)^2} + \frac{1}{2} \frac{1}{1+s^2}$$

Using formulas (20) and (13) from the table of Laplace transforms, we obtain, again,

$$y(t) = \frac{1}{2}te^{-t} + \frac{1}{2}\sin t$$
.

(j) The impulse response is the solution to the equation for $g(t) = \delta(t)$ so that G(s) = 1, and all initial values are zero. Thus, it has Laplace transform

$$H(s) = \frac{1}{(s+1)^2}$$

so that

$$h(t) = t e^{-t},$$

- (k) Since the Laplace transform of the impulse response, the transfer function, is proper, the system is BIBO-stable if and only if the roots of the denominator polynomial have negative real part. Clearly, H(s) has a double root at s = -1, so it is BIBO-stable.
- (l) The system is a damped-driven harmonic oscillator, e.g. a forced mass-spring system with friction. The answer to parts (b) and (c) show clearly that the system is critically damped.

d)
$$\lambda = \lambda_2 = -1$$
 $V = (-1)$ $W = (-1)$
 $x(t) = C_1 e^{-t} (-1) + C_2 e^{-t} [t(-1) + (-1)]$

e) $y'' + 2y' + y = 0$
 $y'' + 2y' + y = cost$
 $y = -1$, $y = -1$

f) $y'' + 2y' + y = cost$
 $y = -1$, $y = -1$
 $y =$