1. A bipartite graph with vertex sets V4 and V; is complete if there is an edge between
every vertex in V; and every vertex in V;.

Notation: The complete bipartite graph with [Vi| =n and |V, = m is called K m.
Ki,m, for any m € N, is called a star.

(a) What is the number of edges of Ky m?

(b) Show that if a graph is complete bipartite and is a tree, then it is a star.
(c) Show that Ks;3 cannot be embedded in the plane.
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2. In the following graph, find the shortest closed path that traverses every edge at least
once.

Your answer should include

(a) a correct solution;

(b) an argument that there is no shorter such path.
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3. Given a circle with center O and a point P outside of it, suggest a construction using
only Euclidean transformations (translation, reflection, rotation) to find a point S
on the circle where the line segment PS is tangent to the circle. (10)
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4. Given two lines ¢; and £, set €5 = Ry, (£2), i.e., ¢j is the reflection of €, about ¢,.

Show that
Re, Ry, =Ry, Rté .
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5. For each of the following, determine whether or not it is a group. If it is a group,
give a full argument why; if it is not, state at at least one property that fails.

(a) The set of real n x n matrices under matrix multiplication;
(b) the orientation-preserving motions of the plane under composition;

(c) the orientation-reversing motions of the plane under composition.

(A motion or Euclidean transformations of the plane is called orientation-preserving
if a clock-wise traversal of a cycle is mapped onto clock-wise traversal of its image;
it is orientation-reversing otherwise.) (4+3+3)

(m) Nt o %'au.? UBQ Jl el nxn pedviee Rave am imator

() The wationo o&%fﬁwﬂ a & geoup, 00 wcmlg&m
to ek Hhat M&m«fﬂouwg mdioo are a oa«.&%cmf.
o Uoedmena wedsr mfmﬂm Yo CW d {wo niliong
ok preasc orindation ™l aloo preatart oninddetion, 7 O.X.
o Lo rews wmdst avere Y Yo M pplrey deen nof tﬂwn%c
oerL'm\, Py e st oo ?m& o, » 0K,

(c,) Ng @ (’)uﬁ*’)%ﬁﬂl«?, w Y ia&h\% v oraaldlion ?mm%



6. Let R, denote the reflection about the line x = «. Let G be the (symmetry) group
generated by the unit translation along the x-axis and by Ry. Show that R, € G if
and only if 2x € Z. (10)
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