- A connected graph G is called 2-connected if it remains connected after removal of any one of its vertices.
 - (a) Give an example of a graph that is connected, but not 2-connected. (5)
 - (b) Show that a graph with at least three vertices is 2-connected if and only if every pair of vertices lies in a cycle. (5+5)
- a) Any tree with more than two vertices.
- b) "=" Fix any two distinct vertices a and b.

"E": Fix $v \in G$ and let $a,b \in G \setminus {}^2(v)$ be arbitrary. Since there is a cycle containing a and b, there is at least one path between a and b avoiding v.

- 2. If A and B are points in the plane, let U_{AB} denote the glide reflection along the line AB which maps A to B.
 - (a) Given a rectangle with vertices A, B, C, and D, show that

$$U_{CD} \circ U_{BC} \circ U_{AB} \circ U_{DA} = e.$$

(In other words, "gliding around the a rectangle" is the identity.)

(b) Find a condition for a more general quadrilateral that ensures that gliding around it also results in the identity.

Hint: If the angle between AB and BC is α , by which angle does $U_{BC} \circ U_{AB}$ rotate a vector?

(5+5)

a)

N.D. C.

Following the orientation of the letter R as it is mapped around the rectangle proves the claim.

(J)

So the first two glide reflections rotate a vector by 2d (ignoring the right), so if β is the engle opposite a, we need $2d+2\beta=360^{\circ}$ or $d+\beta=180^{\circ}$.

- 3. (a) Characterize the group of motions of the line, i.e., the group of maps $\phi \colon \mathbb{R} \to \mathbb{R}$ which preserve the distance between points.
 - (b) Prove that the set of matrices

$$G = \left\{ \begin{pmatrix} \pm 1 & \lambda \\ 0 & 1 \end{pmatrix} : \lambda \in \mathbb{R} \right\}$$

is a group with respect to the usual matrix multiplication. Is it Abelian?

(c) Show that the group of motions of the line is isomorphic to G. Hint: Show that the set

$$L = \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix} : x \in \mathbb{R} \right\}$$

is invariant under G.

(5+5+5)

a) If $y = \phi(x)$, then either $\phi(x+8) = y+8$ or $\phi(x+8) = y-8$ as ϕ must preserve distances. In the first case, ϕ is a translation, in the second case it is a composition of translation and reflection.

Thus, the group is generated by all translations and one reflection.

and
$$\begin{pmatrix} -1 & \lambda \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & \lambda \\ 0 & 1 \end{pmatrix}$$

Moreover,

$$\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \pm 1 & \mu \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \pm 1 & \mu \\ 0 & 1 \end{pmatrix}$$

and
$$\begin{pmatrix} -1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \pm 1 & \mu \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mp 1 & \lambda - \mu \\ 0 & 1 \end{pmatrix}$$

I.e., G is closed under inversion and matrix multiplikation. Thus, it is a subgroup of the group of invertible 2x2 matrices, hence a group.

c)
$$\begin{pmatrix} \pm 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} \pm x + \lambda \\ 1 \end{pmatrix}$$

Thus, if we identify $x \in \mathbb{R}$ with $\binom{x}{i} \in \mathbb{R}^2$, then the matrix $\binom{\pm i}{0}$ corresponds to the motion $\phi(x) = \pm x + \lambda$; by (a) any motion on the line is of this form.

4. A tailor makes jackets and pants. There is enough demand that she sells everything she produces. It takes an hour to make a jacket and half an hour to make a pair of pants. She can spare 10 hours per week for sewing and has a long-running supply contract that provides cloth for 15 pieces per week altogether. The profit on a pair of pants is EUR 15 and the profit on a jacket is EUR 20. How many pieces of each per week should she produce to maximize profit? (10)

Let x denote the number of jackets per week, y denote the number of pants per week.

Then $x+y \le 15$ $x+\frac{1}{2}y \le 10$

and she ought to maximize 2 = 20x + 15y

In standard form:

$$x + y + s_1 = 15$$

 $x + \frac{1}{2}y + s_2 = 10$
 $x_1 y_1 s_1 s_2 > 0$

minimize $S = -20 \times -15 y$.

Let's use the simplex method (graphical is easy as well):

×	4	↓ S,	↓ S _z	
-	<u> </u>	ı	0	15
l	<u>i</u> 2	0	1	10
-20	- 15	0	0	0

× is entering Sz is baving

×	প্ত	V S,	52	
0	1/2	1	-1	5
1	12	0	1	10
0	-5	0	20	200

y is entering 5, is leaving

×	8	s,	5,	- Andrewski (or construction of the constructi
0	l	2	-2	10
Time to the state of the state	0	-1	3	5
0	0	10	10	250

the method terminates here.

=) The should make x=5 jackobs and y=10 pands at a maximum profit of EUR 250.

5. Suppose each of the following tableaus occurs in the course of performing the simplex algorithm on a linear programming problem in standard form.

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x2 is entering variable, but there is no positive pivot => unbounded optimal solution
(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Solution is $x_{4}=-1$ (no chance to choose different basic variables)
-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=> feasible region is empty Basic variable x2 = 0 => degenerate finite optimal solution.
Ctata	for sook soos whather	-

State, for each case, whether

- The feasible region is empty or nonempty;
- The problem has a finite solution;
- if so, whether the solution is degenerate or nondegerate.

(10)

6. Let

$$\tilde{\nu}_k = \frac{1}{N} \sum_{i=0}^{N-1} e^{-ikjh} \nu_j$$

denote the discrete Fourier transform of the complex numbers v_0, \ldots, v_{N+1} . Prove the discrete Parseval identity

$$\sum_{k=0}^{N-1} |\tilde{\nu}_k|^2 = \frac{1}{N} \sum_{j=0}^{N-1} |\nu_j|^2.$$

(10)

 $\sum_{k=0}^{N-1} |\tilde{V}_{k}|^{2} = \sum_{k=0}^{N-1} \frac{1}{N} \sum_{j=0}^{N-1} e^{-ikkj} v_{j} \frac{1}{N} \sum_{\ell=0}^{N-1} e^{ik\ell k} \sqrt{\frac{1}{2}}$

$$= \frac{1}{N} \sum_{j,\ell=0}^{N-1} v_j \overline{v_\ell} \frac{1}{N} \sum_{k=0}^{N-1} e^{ik(\ell-j)k}$$

$$= 8pr$$

$$= 8pr$$

$$=\frac{1}{N}\sum_{j=0}^{N-1}|V_{j}|^{2}$$

7. Let G be a finite Abelian group of order N, and let χ be a character, i.e., a group homomorphism from G to $\mathbb{C}\setminus\{0\}$. Show that $\chi(a)$ is a root of unity for every $a\in G$.

Since G has order N $\chi(a)^{N} = \chi(Na) = \chi(0) = 1$ $\chi(a)^{N} = \chi(a) = \chi(a) = \chi(a) = 1$ $\chi(a)^{N} = \chi(a) = \chi(a) = \chi(a) = 1$ $\chi(a)^{N} = \chi(a) = \chi(a) = \chi(a) = 1$ $\chi(a)^{N} = \chi(a) = \chi(a) = \chi(a) = 1$ $\chi(a)^{N} = \chi(a) = 1$ $\chi(a)$

=> χ (a) is an NH root of unity