1. A connected graph G is called 2-connected if it remains connected after removal of
any one of its vertices.

(a) Give an example of a graph that is connected, but not 2-connected. (5)

(b) Show that a graph with at least three vertices is 2-connected if and only if every
pair of vertices lies in a cycle. (5+5)
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2. I A and B are points in the plane, let U, denote the glide reflection along the line

AB which maps A to B.

(a) Given a rectangle with vertices A, B, C, and D, show that

Uep o Ugc o Ugg o Upy =e.

(In other words, “gliding around the a rectangle” is the identity.)

(b) Find a condition for a more general quadrilateral that ensures that gliding

around it also results in the identity.

Hunt: If the angle between AB and BC is «, by which angle does Uge o Uar

rotate a vector?
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3. (a) Characterize the group of motions of the line, 1e., the group of maps ¢: R = R
which preserve the distance between points.

(b) Prove that the set of matrices

o= {3 )]

is a group with respect to the usual matrix multiplication. Is it Abelian?

(c) Show that the group of motions of the line is isomorphic to G.

Hint: Show that the set
L= { (T) X E R}

is invariant under G.
(5+5+5)
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4. A tailor makes jackets and pants. There is enough demand that she sells everything
she produces. It takes an hour to make a jacket and half an hour to make a pair of
pants. She can spare 10 hours per week for sewing and has a long-running supply
contract that provides cloth for 15 pieces per week altogether. The profil on a pair
of pants 1s EUR 15 and the profit on a jacket is EUR 20. How many pieces of each
per week should she produce to maximize profit? (10)
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5. Suppose each of the following tableaus occurs in the course of performing the simplex
algorithm on a linear programming problem in standard form.
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e The feasible region i1s empty or nonempty;
e The problem has a finite solution;

e if 50, whether the solution is degenerate or nondegerate.
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6. Let
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denote the discrete Fourier transform of the complex numbers vy,
Prove the discrete Parseval identity
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d let x be a character, i.e., a group
) is a root of unity for every a € G.

(10)

7. Let G be a finite Abelian group of order N, an
\J0}. Bhow that x(a

homomorphism from G to C\
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\
%(&)N = X (Na) : x©) = |
/P

A
N X b a Foup me«omoﬂ'@ﬁ%m
ol Wik Y commondion, Hat 2t

- % (&) o~ N fraa&o’f( ,Ulvué



