1. Let

Find a basis for Ker A and Range A. (10)



2. Let P, denote the vector space of polynomials up to degree 2 endowed with inner
product

1 1
(p,q) = ZJ ]P(X) q(x)dx.
and basis B = {1, x,x*}.

(a) Find an orthogonal basis E = {ey, e;, e3} for P,.

Note: To simplify computations, have a careful look at which vectors in B are

E B
(b) Find the matrix S representing the change of basis from B to ¥ and compute S,

already orthogonal. Normalization is not required.

(c) Define a linear map L: V — V by

(Lp)(x) =xp'(x) .

Find the matrix representation of L with respect to the basis B.

(d) Find the matrix representation of L with respect to the basis E.
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3. (E) Let W be a nonempty proper subspace of R™ and let P be the orthogonal projector

onto W. What are the eigenvalues of P7 (Explain!) (8)
(A) Let V be the vector space of continuous functions on R. Define & linear operator
M by

(Mf)(x) = m(x) f(x)

where m € V is fixed. Under which conditions on m does M have eigenvalues?
How are these eigenvalues characterized? (10)
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4. Given a 2m-periodic function with complex Fourier coefficients cy, set g(x) = f(x+a).
Show that g has complex Fourier coefficients ™ . (10)
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5. Compute
J x26(x%) dx.
(10)

4 0- X o do= 3xFdx

oo X
L s [8)Y -
- X ~CQ




6. Consider the following communication network:
A.
A C
Assume the links between stations A, B, and C may fail independently of each other

with failure probabilities P(AC) = %, P(AB) = %, and P(BC) = }Z’ respectively.

(a) What is the probability that there is a path in the network from station A to C?

(b) You are probing the network by sending a signal from station A and find that

you receive the signal at station C. What is the probability that the direct link
AC is working?
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7. The exponential distribution is a continuous probability distribution with probability

distribution function
fx) = Ae™ for x >0,
0 for x < 0.
(a) Show that f is indeed a probability distribution function by checking that it is
properly normalized.
]

(b) Derive its moment generating function M(t) = Ele

(c) Find its mean and variance.
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8. There are two types of students. Students of type A report sick only when they are
actually sick. Students of type B report sick with probability 1 whenever there is an
exam. It is known that the sickness rate of the general working population is 5%. On
every exam, 10% of students report sick.

(a) What is the probability that a randomly selected student is of type B? (5)
(b) (E) What is the probability that a student who reports sick on the day of the
exam is of type B (4)

(A) A student reports sick on the midterm and on the final. What is the proba-
bility that the student is of type B? (5)
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9. Let Xj,..., Xn be identically and independently distributed random variables with
E[Xi] = p and Var[X;] = o2.

(E) Show that

e
(®)

(A) Define the sample mean
N
Xi
Hsample = ; ]—\1—

and the sample variance

ix usmpl).

Show that E[0Z,,.,] = 0. (10)
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