Complex Analysis

Final Exam

December 20, 2021

- 1. (a) Find the real and imaginary parts of $\frac{z+2}{z-1}$.
 - (b) Find all solutions to the equation $z^4 = 1$.
 - (c) Find all complex solutions to the equation $\cos z = \sin z$. Hint: Let $t = e^{iz}$.
 - (d) Find the radius of convergence of $\frac{z^3-1}{z^2+3z-4}$ about the point z=0. (5+5+5+5)
- 2. Short problems (I):
 - (a) Is it true that $|a^b| = |a|^{|b|}$?
 - (b) Suppose f is entire with $|f| \ge 1$ on all of \mathbb{C} . Show that f is a constant.
 - (c) The function $f(z) = z^{-2}$ goes to zero as $|z| \to \infty$. Does this contradict Liouville's theorem?

$$(5+5+5)$$

- 3. Short problems (II):
 - (a) Show that $f(z) = 4z^6 + z^2 2$ has all of its zeros inside the unit disc.
 - (b) Is

$$f(z) = \frac{1}{1+z^2}$$

holomorphic on the exterior of the unit disc, $\{z: |z| > 1\}$?

(c) Let $f: \mathbb{D} \to \mathbb{D}$, where \mathbb{D} denotes the open unit disc, be holomorphic with f(0) = 0. Show that the power series expansion of

$$g(z) = \frac{1}{1 - 2f(z)}$$

converges on $\{z \colon |z| < \frac{1}{2}\}$.

(5+5+5)

4. (a) Integrate the function

$$f(z) = \operatorname{Re} z$$

around the boundary of the square Q = [0, 1] + i[0, 1] with standard orientation.

(b) Is f holomorphic?

(10+5)

(10)

5. Let $\gamma = \{\zeta : |\zeta| = 1, \text{Im } \zeta \ge 0\}$ denote the upper-half unit circle endowed with standard orientation. Show that, for |z| < 1,

$$g(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - z} d\zeta$$

is given by

$$g(z) = rac{1}{2} + rac{1}{2\pi i} \log rac{1+z}{1-z}.$$

Note: Be careful and explicit about the required branch cut. (10)

6. Use contour integration to compute

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} \,\mathrm{d}x\,. \tag{10}$$

- 7. Let $\Omega \subset \mathbb{C}$ be open and simply connected. Show that for any two $u, w \in \Omega$ there exists a conformal map $f: \Omega \to \Omega$ such that f(u) = w. (5)
- 8. Suppose that f is holomorphic and of moderate decay on the strip |Im z| < a, i.e.,

$$|f(x+iy)| \le \frac{A}{1+x^2}$$

for some A > 0 and all $x \in \mathbb{R}$ and |y| < a.

Show that the Fourier transform of f,

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} e^{-2\pi i x \xi} f(x) \, dx$$

satisfies the estimate

$$|\hat{f}(\xi)| \leq B e^{-2\pi b\xi}$$

for some B > 0, every 0 < b < a, and $\xi > 0$.