Calculus and Elements of Linear Algebra I

Mock Midterm Exam

Monday, November 2, 2020

1. Compute the following limits, if they exist. Else, argue why the limit does not exist.
(a) $\lim _{s \rightarrow-1} \frac{\frac{1}{s}-1}{s^{3}-1}$
(b) $\lim _{x \rightarrow \infty} \frac{\mathrm{e}^{2 x}+x^{3}+\ln x}{3 \mathrm{e}^{2 x}-x^{3}+\cos x}$
(c) $\lim _{r \rightarrow 1} \frac{|r-1|}{r^{2}-1}$
2. The function $f(x)$ is defined on the interval $[0,2]$ and is between $4-x$ and $x^{2}+2$ for all x in this interval. Does it have to be continuous at $x=1$? Explain why or why not.
3. Show that the equation $x^{7}-3 x-1=0$ has at least one solution in the interval $[-1,1]$.
4. (a) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \arctan x=\frac{1}{1+x^{2}}
$$

(b) Consider the function

$$
f(x)=2 \arctan x-x .
$$

Find its domain, horizontal and vertical asymptotes, local minima, local maxima, and inflection points of f. Identify the regions where the graph of f is concave upward or concave downward. Finally, sketch the graph of the function.
5. An airplane is flying towards a radar station at a constant height of 6 km above the ground. The distance s between the airplane and the radar station is decreasing at a rate of $400 \mathrm{~km} / \mathrm{h}$ when $s=10 \mathrm{~km}$. What is the horizontal speed of the plane?
6. Compute the following definite or indefinite integrals.
(a) $\int x^{-3} \mathrm{e}^{1 / x} \mathrm{~d} x$
(b) $\int \frac{x+1}{x^{2}\left(x^{2}+1\right)} \mathrm{d} x$
(c) $\int_{0}^{2 \pi}\left(\cos ^{2} \phi-\sin ^{2} \phi\right) d \phi$
$(10+10+5)$
7. Find the derivative of the function

$$
\begin{equation*}
F(x)=\int_{\sqrt{x}}^{x} \frac{\mathrm{e}^{t}}{t} \mathrm{~d} t \tag{5}
\end{equation*}
$$

