Calculus and Elements of Linear Algebra I

Final Exam

December 14, 2020

Some trigonometric identities:

$$
\begin{array}{ll}
\sin ^{2} \theta+\cos ^{2} \theta=1 & \sin 2 x=2 \sin x \cos x \\
1+\tan ^{2} \theta=\sec ^{2} \theta & \cos 2 x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
1+\cot ^{2} \theta=\csc ^{2} \theta & \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x} \\
\sin ^{2} x=\frac{1-\cos 2 x}{2} & \cos ^{2} x=\frac{1+\cos 2 x}{2}
\end{array}
$$

Useful integrals:

$$
\begin{gathered}
\int \frac{d u}{\sqrt{1-u^{2}}}=\arcsin u+C \\
\int \frac{d u}{1+u^{2}}=\arctan u+C=-\operatorname{arccot} u+C^{\prime} \\
\int \frac{d u}{u \sqrt{u^{2}-1}}=\operatorname{arcsec}|u|+C \\
\int \sec u d u=\ln |\sec u+\tan u|+C
\end{gathered}
$$

1. Compute the limits
(a) $\lim _{t \rightarrow \infty} e^{-t} \cos (t) \sin (t)$
(b) $\lim _{\theta \rightarrow 0} \frac{1-\cos (2 \theta)}{\theta^{2}}$
(c) Compute the derivative of

$$
f(x)=\frac{1}{x}
$$

directly from its definition as the limit of a difference quotient.
2. Consider the function

$$
f(x)=\frac{2-x^{2}}{1-x^{2}}
$$

What is the domain of f ? Find horizontal and vertical asymptotes, local minima, local maxima, and inflection points of f. Identify the regions where the graph of f is concave upward or concave downward. Finally, sketch the graph into the coordinate system provided.
3. A farmer owns a 10 km long stretch of land between two parallel rivers that are 2 km apart. What is the area of the largest rectangular corral he can enclose with
(a) 2 km of fencing,
(b) 5 km of fencing,
assuming that no fence is needed along the river?
4. Use implicit differentiation to find an equation for the tangent line to the graph of $\sin (x+y)=y^{2} \cos (x)$ at point $(0,0)$.
5. Compute the following integrals:
(a) $\int_{0}^{1} \ln x d x$
(b) $\int \frac{x^{2}+1}{x^{2}-1} d x$
6. Is the following improper integral convergent? There is no need to compute the answer, but you should give detailed reasoning.

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\ln x+\mathrm{e}^{-x}}{1+x^{2}} \mathrm{~d} x \tag{10}
\end{equation*}
$$

7. Consider the differential equation

$$
\frac{d y}{d t}=t^{3} y^{3}
$$

(a) Solve the initial value problem with $y(0)=2$.
(b) Does this equation have equilibrium points? Are they stable or unstable?
8. Show that, for $u, v \in \mathbb{R}^{3}$,

$$
\begin{equation*}
\|\mathbf{u}\|^{2}\|\boldsymbol{v}\|^{2}=(\mathbf{u} \cdot \boldsymbol{v})^{2}+\|\mathbf{u} \times \boldsymbol{v}\|^{2} . \tag{5}
\end{equation*}
$$

9. Find the general solution to the system of linear equations $A x=\mathbf{b}$ with

$$
A=\left(\begin{array}{cccc}
2 & 0 & 2 & 4 \tag{10}\\
0 & 1 & 0 & 1 \\
2 & -1 & 2 & 3 \\
1 & 1 & 1 & 3
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
-2 \\
-2 \\
0 \\
-3
\end{array}\right)
$$

10. Let $\mathrm{L}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the "shift mapping" defined as follows:

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
0 \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) .
$$

(a) Show that L is a linear transformation on \mathbb{R}^{4}.
(b) Write out the matrix S which represents L with respect to the standard basis.
(c) Find a basis for Range S and Ker S.
(d) State the "rank-nullity theorem" and verify explicitly that the result obtained in part (c) matches the statement of the theorem.

