Calculus and Elements of Linear Algebra I

Homework 8

Due on Moodle, Monday, November 9, 2020

1. Find

$$
\int_{0}^{1} \ln x \mathrm{~d} x
$$

2. Show that

$$
\int_{0}^{\infty} \frac{1}{\sqrt{1+x^{8}}} \mathrm{~d} x
$$

is convergent.
Hint: There is no elementary way to evaluate this integral. However, to only test convergence, you can bound the integrand by a simpler function and use the following fact without proof: Let $f:[a, \infty) \rightarrow \mathbb{R}$ be a bounded and increasing function. Then $\lim _{x \rightarrow \infty} f(x)$ exists.
3. (a) Show that the volume enclosed when revolving the curve $y=f(x)$, where $f:[a, b] \rightarrow$ $[0, \infty)$ about the x-axis in three-dimensional $x-y-z$ space is given by

$$
V=\pi \int_{a}^{b} f^{2}(x) \mathrm{d} x
$$

(b) Compute the volume of the solid obtained by revolving the graph of of $y=x^{3}$ on $[0,1]$ about the x-axis.
4. (a) Compute the volume of the infinite solid obtained by revolving the graph of $y=$ $x^{-2 / 3}$ on $[1, \infty)$ about the x-axis and show that it is finite.
(b) Show that the cross-sectional area when cutting this solid in the $x-y$ plane is infinite.
5. Hook's law states that the force exerted by an ideal spring when extended from its equilibrium position at $x=0$ to length x is given by

$$
F(x)=-k x
$$

where k is a positive constant characterizing the stiffness of the spring. Compute the work required to expand the spring from its equilibrium position to length ℓ.

