Calculus and Elements of Linear Algebra I

Homework 7

Due on Moodle, Monday, October 26, 2020

1. Use substitution to evaluate the following integrals.

(a)
$$\int \frac{\cos(\pi/x)}{x^2} dx$$

(b)
$$\int_1^e \frac{\ln x}{x} dx$$

- 2. Use integration by parts to evaluate the following integrals.
 - (a) $\int \sin(x) \ln(\cos x) dx$ (b) $\int_0^{\pi/2} x \sin(x) \cos(x) dx$
- 3. (a) Prove the reduction formula

$$\int \cos^{n}(x) \, \mathrm{d}x = \frac{1}{n} \, \cos^{n-1}(x) \, \sin(x) + \frac{n-1}{n} \int \cos^{n-2}(x) \, \mathrm{d}x \, .$$

Hint: Use integration by parts and the fact that $\cos^2(x) + \sin^2(x) = 1$.

(b) Evaluate
$$\int \cos^2(x) dx$$
.
(c) Evaluate $\int_0^{2\pi} \cos^4(x) dx$.

- 4. Find the area between the curves $x = 1 y^2$ and y = -x 1.
- 5. Suppose that $f: \mathbb{R} \to \mathbb{R}$ continuous and *odd*, i.e., satisfies -f(x) = f(-x). Show that

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$