Calculus and Elements of Linear Algebra I

Homework 7

Due on Moodle, Monday, October 26, 2020

1. Use substitution to evaluate the following integrals.
(a) $\int \frac{\cos (\pi / x)}{x^{2}} \mathrm{~d} x$
(b) $\int_{1}^{\mathrm{e}} \frac{\ln x}{x} \mathrm{~d} x$
2. Use integration by parts to evaluate the following integrals.
(a) $\int \sin (x) \ln (\cos x) d x$
(b) $\int_{0}^{\pi / 2} x \sin (x) \cos (x) \mathrm{d} x$
3. (a) Prove the reduction formula

$$
\int \cos ^{n}(x) \mathrm{d} x=\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) \mathrm{d} x .
$$

Hint: Use integration by parts and the fact that $\cos ^{2}(x)+\sin ^{2}(x)=1$.
(b) Evaluate $\int \cos ^{2}(x) \mathrm{d} x$.
(c) Evaluate $\int_{0}^{2 \pi} \cos ^{4}(x) \mathrm{d} x$.
4. Find the area between the curves $x=1-y^{2}$ and $y=-x-1$.
5. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous and odd, i.e., satisfies $-f(x)=f(-x)$. Show that

$$
\int_{-a}^{a} f(x) \mathrm{d} x=0 .
$$

