Calculus and Elements of Linear Algebra I

Homework 5

Due on Moodle, Monday, October 12, 2020

- 1. Use implicit differentiation to find an equation of the tangent line to the graph of the given equation at the given point.
 - (a) $x^2 y = x + 2$ at point (2, 1)
 - (b) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$ at point (8,1)
- 2. An airplane flying horizontally at a height of 5 km with a speed of 300 m/s passes directly above an observer. What is the rate of increase of distance to the observer 30 s later?
- 3. A balloon is filled at a rate of 100π cm³ per second. At what rate is the radius of the balloon increasing when the radius is 10 cm?
- 4. Show that

$$\frac{\mathrm{d}\arcsin x}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}}\,.$$

(The function $y = \arcsin x$ is the inverse function of $x = \sin y$.)

- 5. Find all critical points (points where f'(x) = 0) for the following functions, and characterize whether they correspond to a local minimum, a local maximum, or neither.
 - (a) $f(x) = x^3 3x + 3$
 - (b) $f(x) = x^3 + 3x + 3$
 - (c) $g(t) = \cos(\omega t)$ with $\omega \neq 0$