Calculus and Elements of Linear Algebra I

Homework 4

Due on Moodle, Monday, October 5, 2020

1. Consider the polynomial

$$
p(x)=-2+9 x-6 x^{2}+x^{3}
$$

(a) Find the roots of p.

Hint: One of the roots is $x=2$.
(b) Compute $p^{\prime}(x)$ and find its roots.
(c) Compute $p^{\prime \prime}(x)$ and find its roots.
(d) Do you see a pattern? Explain.
2. Compute the derivatives of the following functions.
(a) $f(x)=\frac{x}{a+x^{2}}$ where a is a constant
(b) $g(t)=\cos (\omega t+\phi)$ where ω and ϕ are constants
(c) $h(s)=\sin \left(s^{3}\right)$
(d) $j(s)=(\sin s)^{3}$
(e) $k(x)=\ln \left(x^{a}+x^{-a}\right)$ where $a \neq 0$ is a constant

Note: You can use without further discussion that $(\ln x)^{\prime}=1 / x$.
(f) $\ell(x)=\ln \left(a^{x}+a^{-x}\right)$ where $a>0$ is a constant
(g) $u(x)=\exp (b x)$ where b is a constant
(h) $v(x)=x^{2} \exp (x)$
(i) $w(x)=\exp \left(-x^{2}\right)$
(j) $z(x)=x^{x}$
3. Use the definition of the derivative,

$$
f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to show that the function $f(x)=|x|$ is not differentiable at $x=0$.
4. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at $x \in(a, b)$ with $f^{\prime}(x) \neq 0$ and that f is invertible in some neighborhood of x.
(a) Show that the inverse function f^{-1} is differentiable in some neighborhood of $y=$ $f(x)$ with

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}
$$

(b) Give a geometrical explanation of why this is true.

