Calculus and Elements of Linear Algebra I

Homework 3

Due on Moodle, September 28, 2020

1. Compute the following limits:

(a)
$$\lim_{\theta \to 0} \frac{\theta}{\sin \theta}$$

(b)
$$\lim_{\phi \to 0} \frac{1 - 2 \cos^2 \phi}{\phi}$$

Hint: For (b), use the double-angle identity

$$\cos^2\phi = \frac{1+\cos 2\phi}{2}$$

2. The (natural) exponential function can be defined as

$$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n.$$
(*)

Use this definition to show that $\exp(a + b) = \exp(a) \cdot \exp(b)$ for all $a, b \in \mathbb{R}$. *Hint:* Convert the definition (*) into a different limit by setting y = x/n.

3. Show that the equation

 $x = \cos x$

has at least one solution in the interval $(0, \pi/2)$.

Hint: Intermediate value theorem.

- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $g : \mathbb{R} \to \mathbb{R}$ some real-valued function. Show, by giving a counter example, that the following statement is not generally true: If h(x) = f(g(x)) is continuous, then g is also continuous.
- 5. Compute the derivative of the following functions directly from the definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- (a) $f(x) = x^2$
- (b) $f(x) = \sqrt{x}$