Calculus and Elements of Linear Algebra I

Homework 3

Due on Moodle, September 28, 2020

1. Compute the following limits:
(a) $\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}$
(b) $\lim _{\phi \rightarrow 0} \frac{1-2 \cos ^{2} \phi}{\phi}$

Hint: For (b), use the double-angle identity

$$
\cos ^{2} \phi=\frac{1+\cos 2 \phi}{2}
$$

2. The (natural) exponential function can be defined as

$$
\begin{equation*}
\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \tag{*}
\end{equation*}
$$

Use this definition to show that $\exp (a+b)=\exp (a) \cdot \exp (b)$ for all $a, b \in \mathbb{R}$.
Hint: Convert the definition $\left({ }^{*}\right)$ into a different limit by setting $y=x / n$.
3. Show that the equation

$$
x=\cos x
$$

has at least one solution in the interval $(0, \pi / 2)$.
Hint: Intermediate value theorem.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $g: \mathbb{R} \rightarrow \mathbb{R}$ some real-valued function. Show, by giving a counter example, that the following statement is not generally true: If $h(x)=f(g(x))$ is continuous, then g is also continuous.
5. Compute the derivative of the following functions directly from the definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(a) $f(x)=x^{2}$
(b) $f(x)=\sqrt{x}$

