Calculus and Elements of Linear Algebra I

Homework 11

Due on Moodle, Monday, November 30, 2020

1. Solve the following system of linear equations using the method taught in class.

$$
\begin{aligned}
x_{1}+3 x_{2}-5 x_{3} & =4 \\
x_{1}+4 x_{2}-8 x_{3} & =7 \\
-3 x_{1}-7 x_{2}+9 x_{3} & =-6
\end{aligned}
$$

2. Find conditions on α such that following system of linear equations has (a) exactly one solution, (b) no solutions, or (c) an infinite number of solutions; give all solutions where they exist.

$$
\begin{aligned}
x_{1}+\alpha x_{2} & =1 \\
x_{1}-x_{2}+3 x_{3} & =-1 \\
2 x_{1}-2 x_{2}+\alpha x_{3} & =-2
\end{aligned}
$$

3. Let $\boldsymbol{v}=(1,2,3)^{T}$ be a vector expressed in coordinates with respect to the standard basis of \mathbb{R}^{3}. Find the coordinates of this vector with respect to the basis

$$
\boldsymbol{b}_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad \boldsymbol{b}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \boldsymbol{b}_{3}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

4. Determine whether the following vectors form a basis of \mathbb{R}^{4}. If not, obtain a basis by adding and/or removing vectors from the set.

$$
\boldsymbol{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right), \quad \boldsymbol{v}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
2
\end{array}\right), \quad \boldsymbol{v}_{3}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right), \quad \boldsymbol{v}_{4}=\left(\begin{array}{c}
-1 \\
3 \\
1 \\
0
\end{array}\right)
$$

5. A matrix is called singular if the homogeneous linear system $A \boldsymbol{v}=\boldsymbol{b}$ has a "non-trivial" solution $\boldsymbol{v} \neq 0$.
Prove that $A B=0$ implies that at least one of the matrices is singular.
