Calculus and Elements of Linear Algebra I

Homework 10

Due on Moodle, Monday, November 23, 2020

1. Prove the following identities for vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{3}$.
(a) The "BAC-CAB-identity"

$$
\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c})-\boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})
$$

(b) The Jacobi identity in three dimensions

$$
\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})+\boldsymbol{b} \times(\boldsymbol{c} \times \boldsymbol{a})+\boldsymbol{c} \times(\boldsymbol{a} \times \boldsymbol{b})=0 .
$$

2. Prove the following identities for vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \mathbb{R}^{3}$.
(a) The Cauchy-Binet formula in three dimensions

$$
(\boldsymbol{a} \times \boldsymbol{b}) \cdot(\boldsymbol{c} \times \boldsymbol{d})=(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d})-(\boldsymbol{a} \cdot \boldsymbol{d})(\boldsymbol{b} \cdot \boldsymbol{c})
$$

Hint: Use the identity $\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=\boldsymbol{v} \cdot(\boldsymbol{w} \times \boldsymbol{u})$.
(b) The identity

$$
\|\boldsymbol{a} \times \boldsymbol{b}\|^{2}=\|\boldsymbol{a}\|^{2}\|\boldsymbol{b}\|^{2}-(\boldsymbol{a} \cdot \boldsymbol{b})^{2} .
$$

3. Find an equation for the plane that contains the point $\boldsymbol{p}=(2,4,6)$ and the line

$$
\boldsymbol{x}=\left(\begin{array}{l}
7 \\
3 \\
5
\end{array}\right)+\lambda\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right)
$$

4. Find the distance between the point $\boldsymbol{p}=(1,2,3)$ and the line

$$
\boldsymbol{x}=\left(\begin{array}{c}
-1 \\
1 \\
6
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) .
$$

5. Prove the following statement: Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be linearly independent. If a vector \boldsymbol{w} can be written

$$
\boldsymbol{w}=\sum_{k=1}^{n} \alpha_{k} \boldsymbol{v}_{k}
$$

the choice of the coefficients $\alpha_{1}, \ldots, \alpha_{n}$ is unique.

