Calculus and Elements of Linear Algebra I

Homework 1
Due on Moodle, September 14, 2020

1. (a) Find the (complex) roots of the polynomial

$$
p(x)=x^{2}+4 x+13 .
$$

(b) Find the values of the parameter λ for which the equation

$$
2 x^{2}-\lambda x+\lambda=0
$$

has no real solutions.
2. Find all the roots (real or complex) of the polynomial

$$
p(x)=24-8 x-18 x^{2}+18 x^{3}-x^{4}-4 x^{5}+x^{6} .
$$

Hint: $x=3$ is a root. Divide out the associated linear factor and continue with more roots that are easy to guess.
3. Assuming that $z=a+b \mathrm{i}$ is a complex number, compute real and imaginary parts of
(a) $\frac{1}{z^{2}}$,
(b) $\frac{z+1}{2 z-5}$,
(c) z^{3}.
4. (a) Compute $\left|\frac{1+\mathrm{i}}{2-\mathrm{i}}\right|$.
(b) Characterize the set of real numbers x that satisfy

$$
|6-4 x| \geq|x-2|
$$

5. (a) For $v, w \in \mathbb{C}$, show that $v^{*} w^{*}=(v w)^{*}$.
(b) Conclude, inductively, that $\left(z^{n}\right)^{*}=\left(z^{*}\right)^{n}$ for $z \in \mathbb{C}$ and $n \in \mathbb{N}$.
